Purpose: Renovation of the brachytherapy program at a leading cancer center utilized methods of the AAPM TG-100 report to objectively evaluate current clinical brachytherapy workflows and develop techniques for minimizing the risk of failures, increasing efficiency, and consequently providing opportunities for improved treatment quality. The TG-100 report guides evaluation of clinical workflows with recommendations for identifying potential failure modes (FM) and scoring them from the perspective of their occurrence frequency O, failure severity S, and inability to detect them D. The current study assessed the impact of differing methods to determine the risk priority number (RPN) beyond simple multiplication.
View Article and Find Full Text PDFPurpose: To develop and validate a Monte Carlo model of the Varian TrueBeam to study electron collimation using the existing photon multi-leaf collimators (pMLC), instead of conventional electron applicators and apertures.
Materials And Methods: A complete Monte Carlo model of the Varian TrueBeam was developed using Tool for particle simulation (TOPAS) (version 3.1.
Purpose: While the noninvasive breast brachytherapy (NIBB) treatment procedure, known as AccuBoost, for breast cancer patients is well established, the treatment quality can be improved by the efficiency of the workflow delivery. A formalized approach evaluated the current workflow through failure modes and effects analysis and generated insight for developing new procedural workflow techniques to improve the clinical treatment process.
Methods And Materials: AccuBoost treatments were observed for several months while gathering details on the multidisciplinary workflow.