Publications by authors named "Michelle L Pantoya"

Article Synopsis
  • * Five types of these zeolites, labeled NSMFI(y) based on their Si/Al ratios, were created with controlled acidity and tested in combustion experiments involving aluminum nanoparticles and a specific fuel.
  • * The addition of NSMFI(y) improved ignition delays and burning times significantly, with the variant NSMFI(60) showing the highest combustion efficiency at 80%. This research is aimed at advancing the development of sustainable fuel technologies.
View Article and Find Full Text PDF

In this work, the effects of two TiO polymorphs on the decomposition of ammonium perchlorate (NHClO) were studied experimentally and theoretically. The interactions between AP and various surfaces of TiO were modeled using density functional theory (DFT) calculations. Specifically, the adsorption of AP on three rutile surfaces (1 1 0), (1 0 0), and (0 0 1), as well as two anatase surfaces (1 0 1), and (0 0 1) were modeled using cluster models, along with the decomposition of adsorbed AP into small molecules.

View Article and Find Full Text PDF

High-energy-density aluminum nanoparticles (AlNPs) upon thermal annealing followed by superquenching result in elevated stress levels in the metallic core and reduced surface energy at the core-shell interface. Isomer-selective vacuum ultraviolet-based photoionization mass spectrometry coupled to a high-temperature chemical microreactor reveals that these stress-altered AlNPs (SA-AlNPs) exhibit distinctive temperature-dependent reactivities toward catalytic decomposition of the hydrocarbon jet fuel -tetrahydrodicyclopentadiene (JP-10, CH) compared to untreated AlNPs (UN-AlNPs). SA-AlNPs show a delayed initiation of the decomposition for JP-10 by 200 K relative to the UN-AlNPs; however, the full decomposition is achieved at a 100 K lower temperature.

View Article and Find Full Text PDF

The oxidation of gas-phase -tetrahydrodicyclopentadiene (JP-10, CH) over aluminum nanoparticles (AlNP) has been explored between a temperature range of 300 and 1250 K with a novel chemical microreactor. The results are compared with those obtained from chemical microreactor studies of helium-seeded JP-10 and of helium-oxygen-seeded JP-10 without AlNP to gauge the effects of molecular oxygen and AlNP, respectively. Vacuum ultraviolet (VUV) photoionization mass spectrometry reveals that oxidative decomposition of JP-10 in the presence of AlNP is lowered by 350 and 200 K with and without AlNP, respectively, in comparison with pyrolysis of the fuel.

View Article and Find Full Text PDF

High energy density aluminum nanoparticles (AlNPs) have been at the center of attention as additives to hydrocarbon jet fuels like -tetrahydrodicyclopentadiene (JP-10, CH) aiming at the superior performance of volume-limited air-breathing propulsion systems. However, a fundamental understanding of the ignition and combustion chemistry of JP-10 in the presence of AlNPs has been elusive. Exploiting an isomer-selective comprehensive identification of the decomposition products in a newly designed high-temperature chemical microreactor coupled to vacuum ultraviolet photoionization, we reveal an active low-temperature heterogeneous surface chemistry commencing at 650 K involving the alumina (AlO) shell.

View Article and Find Full Text PDF

Aluminum iodate hexahydrate ([Al(HO)](IO)(HIO); AIH) represents a novel, oxidizing material for energetic applications. Recently, AIH was synthesized to replace the aluminum oxide passivation layer of aluminum nanoenergetic materials (ALNEM). The design of reactive coatings for ALNEM-doped hydrocarbon fuels in propulsion systems requires fundamental insights of the elementary steps of the decomposition of AIH.

View Article and Find Full Text PDF

Titanium (Ti), aluminum (Al), and boron (B) reactive mixed-metal nanopowders (Ti-Al-B RMNPs) represent attractive additives to hydrocarbon fuels such as -tetrahydrodicyclopentadiene (CH; JP-10) enhancing the limited volumetric energy densities of traditional hydrocarbons, but fundamental mechanisms and combustion stages in the oxidation have been obscure. This understanding is of vital significance in the development of next-generation propulsion systems and energy-generation technologies. Here, we expose distinct oxidation stages of single droplets of JP-10 doped with Ti-Al-B-RMNP exploiting innovative ultrasonic levitator technology coupled with time-resolved spectroscopic (UV-vis) and imaging diagnostics (optical and infrared).

View Article and Find Full Text PDF

Harnessing aluminum oxidation energy requires navigating the particle's passivation shell composed of alumina. The shell is a barrier to aluminum oxidation but can also exothermically react with halogenated species and therefore contribute to the overall energy generated during aluminum particle combustion. Fluorination reactions with alumina have been studied because fluorine is abundant in binder formulations that commonly surround aluminum particles in an energetic mixture.

View Article and Find Full Text PDF

This study examines the thermal behavior of a laser ignited thermite composed of aluminum and bismuth trioxide. Temperature data were collected during the reaction using a four-color pyrometer and a high-speed color camera modified for thermography. The two diagnostics were arranged to collect data simultaneously, with similar fields of view and with similar data acquisition rates, so that the two techniques could be directly compared.

View Article and Find Full Text PDF

Surface modification is used to dramatically alter the thermal properties of a bulk metallic material. Thermal barrier coatings (TBCs) are typically applied using spray deposition or laser-based techniques to create a ceramic coating on a metal substrate. In this study, an effective TBC is created directly on a metallic substrate by inducing surface chemical reactions.

View Article and Find Full Text PDF

Density functional theory calculations were used to reveal the mechanism for the fluorination reaction of active Lewis acid sites on alumina structures, which is important in understanding the pyrophoric processes involving Al particles. In this reaction, hydroxyl groups of active sites are replaced by fluorine anions. Alumina structures were represented by three aluminum aqua hydroxo clusters (labeled AlOOH), in which the Al atom had different coordination spheres, particularly four, five, or six.

View Article and Find Full Text PDF

Iodine containing oxidizers are especially effective for neutralizing spore forming bacteria by generating iodine gas as a long-lived bactericide. Metal iodates have been shown to be strong oxidizers when combined with aluminum fuel particles for energy generating applications. One method to produce metal iodates is by using metal oxides and an energetic salt: aluminum iodate hexahydrate (Al(HO)(IO)(HIO)), which is called AIH.

View Article and Find Full Text PDF

Addition of high-energy-density materials such as aluminum (Al) microparticles or nanoparticles to liquid propellants potentially improves performance of the fuel. We report on the effects of untreated, prestressed, and superquenched aluminum particles with diameters of 100 nm, 250 nm, 500 nm, 1.6 μm, and 8.

View Article and Find Full Text PDF

Energetic films were synthesized using stress altered nano-aluminum particles (nAl). The nAl powder was pre-stressed to examine how modified mechanical properties of the fuel particles influenced film reactivity. Pre-stressing conditions varied by quenching rate.

View Article and Find Full Text PDF

Advancement of the next generation of air-breathing propulsion systems will require developing novel high-energy fuels by adding high energy-density materials such as aluminum to enhance fuel performance. We present original measurements, obtained by exploiting the ultrasonic levitation technique, to elucidate the oxidation of -tetrahydrodicyclopentadiene (JP-10; CH) droplets doped with 80 nm-diameter aluminum nanoparticles (Al NPs) in an oxygen-argon atmosphere. The oxidation was monitored by Raman, Fourier-transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopies together with high-speed optical and IR thermal-imaging cameras.

View Article and Find Full Text PDF

An approach for optimizing fuel particle reactivity involves the metallurgical process of pre-stressing. This study examined the effects of pre-stressing on aluminum (Al) particle ignition delay and burn times upon thermal ignition by laser heating. Pre-stressing was by annealing Al powder at 573 K and quenching ranged from slow (i.

View Article and Find Full Text PDF

A new synthesis approach for aluminum particles enables an aluminum core to be passivated by an oxidizing salt: aluminum iodate hexahydrate (AIH). Transmission electron microscopy (TEM) images show that AIH replaces the AlO passivation layer on Al particles that limits Al oxidation. The new core-shell particle reactivity was characterized using laser-induced air shock from energetic materials (LASEM) and results for two different Al-AIH core-shell samples that vary in the AIH concentration demonstrate their potential use for explosive enhancement on both fast (detonation velocity) and slow (blast effects) timescales.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations were performed to examine exothermic surface chemistry between alumina and four fluorinated, fragmented molecules representing species from decomposing fluoropolymers: F, HF, CHF, and CF. The analysis has strong implications for the reactivity of aluminum (Al) particles passivated by an alumina shell. It was hypothesized that the alumina surface structure could be transformed due to hydrogen bonding effects from the environment that promote surface reactions with fluorinated species.

View Article and Find Full Text PDF

Combusting metals burn at high temperatures and emit high-intensity radiation in the visible spectrum, which can oversaturate regular imaging sensors and obscure the field of view. Filtering the luminescence can result in limited information and hinder thorough combustion characterization. A method for "seeing through the flames" of a highly luminescent aluminum powder reaction is presented using copper vapor laser (CVL) illumination, synchronized with a high-speed camera.

View Article and Find Full Text PDF

The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This work utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered.

View Article and Find Full Text PDF

Tetraiodine nonoxide (I4O9) has been synthesized using a dry approach that combines elemental oxygen and iodine without the introduction of hydrated species. The synthesis approach inhibits the topochemical effect promoting rapid hydration when exposed to the relative humidity of ambient air. This stable, amorphous, nano-particle material was analyzed using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) and showed an exothermic energy release at low temperature (i.

View Article and Find Full Text PDF

Brain cancer is a fatal disease that is difficult to treat because of poor targeting and low permeability of chemotherapeutic drugs through the blood brain barrier. In a comparison to current treatments, such as surgery followed by chemotherapy and/or radiotherapy, photothermal therapy is a remarkable noninvasive therapy developed in recent years. In this work, porphyrin immobilized nanographene oxide (PNG) was synthesized and bioconjugated with a peptide to achieve enhanced and targeted photothermal therapy for brain cancer.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations were performed to understand molecular variations on an alumina surface due to exposure to a polar environment. The analysis has strong implications for the reactivity of aluminum (Al) particles passivated by an alumina shell. Recent studies have shown a link between the carrier fluid used for Al powder intermixing and the reactivity of Al with fluorine containing reactive mixtures.

View Article and Find Full Text PDF

Iodine oxide is a highly reactive solid oxidizer and with its abundant generation of iodine gas during reaction, this oxidizer also shows great potential as a biocidal agent. A problem with using I2O5 in an energetic mixture is its highly variable reactive behavior. This study isolates the variable reactivity associated with I2O5 as a function of its chemical reaction in various environments.

View Article and Find Full Text PDF

Aluminum (Al) particles are passivated by an aluminum oxide (Al2O3) shell. Energetic blends of nanometer-sized Al particles with liquid perfluorocarbon-based oxidizers such as perfluoropolyethers (PFPE) excite surface exothermic reaction between fluorine and the Al2O3 shell. The surface reaction promotes Al particle reactivity.

View Article and Find Full Text PDF