Publications by authors named "Michelle L Matter"

The 90 kDa ribosomal S6 kinases (RSKs) are serine threonine kinases comprising four isoforms. The isoforms can have overlapping functions in regulation of migration, invasion, proliferation, survival, and transcription in various cancer types. However, isoform specific differences in RSK1 versus RSK2 functions in gene regulation are not yet defined.

View Article and Find Full Text PDF

Mortality from cancer-associated sepsis varies by cancer site and host responses to sepsis are heterogenous. Native Hawaiians have the highest mortality risk from cancer-associated sepsis and colorectal cancer (CRC), even though they demonstrate lower CRC incidence compared to other ethnicities. We conducted a retrospective transcriptomic analysis of CRC tumors and adjacent non-tumor tissue from adult patients of Native Hawaiian and Japanese ethnicity who died from cancer-associated sepsis.

View Article and Find Full Text PDF

Calcium Ca2+ regulation is a key component of numerous cellular functions. In cardiomyocytes, Ca2+ regulates excitation-contraction coupling and influences signaling cascades involved in cell metabolism and cell survival. Prolonged dysregulation of mitochondrial Ca2+ leads to dysfunctional cardiomyocytes, apoptosis and ultimately heart failure.

View Article and Find Full Text PDF

Endosomal trafficking of cell surface receptors is essential to their function. Integrins are transmembrane receptors that integrate adhesion to the extracellular matrix with engagement of the cytoskeleton. Ligated integrins mediate diverse signals that regulate matrix assembly, cell survival, cell morphology, and cell motility.

View Article and Find Full Text PDF

The Ras homologous (Rho) protein family of GTPases (RhoA, RhoB and RhoC) are the members of the Ras superfamily and regulate cellular processes such as cell migration, proliferation, polarization, adhesion, gene transcription and cytoskeletal structure. Rho GTPases function as molecular switches that cycle between GTP-bound (active state) and GDP-bound (inactive state) forms. Leukaemia-associated RhoGEF (LARG) is a guanine nucleotide exchange factor (GEF) that activates RhoA subfamily GTPases by promoting the exchange of GDP for GTP.

View Article and Find Full Text PDF

Cardiac tissue requires a persistent production of energy in order to exert its pumping function. Therefore, the maintenance of this function relies on mitochondria that represent the "powerhouse" of all cardiac activities. Mitochondria being one of the key players for the proper functioning of the mammalian heart suggests continual regulation and organization.

View Article and Find Full Text PDF

Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD).

View Article and Find Full Text PDF

Interest has emerged in the therapeutic potential of inhibiting store operated calcium (Ca) entry (SOCE) for melanoma and other cancers because malignant cells exhibit a strong dependence on Ca flux for disease progression. We investigated the effects of deleting Selenoprotein K (SELENOK) in melanoma since previous work in immune cells showed SELENOK was required for efficient Ca flux through the endoplasmic reticulum Ca channel protein, inositol 1,4,5-trisphosphate receptor (IP3R), which is due to the role SELENOK plays in palmitoylating and stabilizing the expression of IP3R. CRISPR/Cas9 was used to generate SELENOK-deficiency in human melanoma cells and this led to reduced Ca flux and impaired IP3R function, which inhibited cell proliferation, invasion, and migration.

View Article and Find Full Text PDF

Directed migration is essential for cell motility in many processes, including development and cancer cell invasion. RSKs (p90 ribosomal S6 kinases) have emerged as central regulators of cell migration; however, the mechanisms mediating RSK-dependent motility remain incompletely understood. We have identified a unique signaling mechanism by which RSK2 promotes cell motility through leukemia-associated RhoGEF (LARG)-dependent Rho GTPase activation.

View Article and Find Full Text PDF

Background/objectives: Sepsis is a severe systemic response to infection with a high mortality rate. A higher incidence has been reported for older people, in persons with a compromised immune system including cancer patients, and in ethnic minorities. We analyzed sepsis mortality and its predictors by ethnicity in the Multiethnic Cohort (MEC).

View Article and Find Full Text PDF

Peptidyl-tRNA hydrolase 2 (PTRH2) regulates integrin-mediated pro-survival and apoptotic signaling. PTRH2 is critical in muscle development and regulates myogenic differentiation. In humans a biallelic mutation in the PTRH2 gene causes infantile-onset multisystem disease with progressive muscle weakness.

View Article and Find Full Text PDF

In glioblastoma (GBM), infiltration of primary tumor cells into the normal tissue and dispersal throughout the brain is a central challenge to successful treatment that remains unmet. Indeed, patients respond poorly to the current therapies of tumor resection followed by chemotherapy with radiotherapy and have only a 16-month median survival. It is therefore imperative to develop novel therapies.

View Article and Find Full Text PDF

The chromatin immunoprecipitation (ChIP) assay is a versatile technique used to evaluate the association of proteins with specific DNA regions both in vivo and in vitro. This assay can be used to identify proteins associated with a specific region of the genome, or the opposite, to identify the many regions of the genome associated with a particular protein. The ChIP assay can also be used to analyze binding of transcription factors, transcription cofactors, DNA replication factors, and DNA repair proteins.

View Article and Find Full Text PDF

Cells respond to their environment by relaying mechanical force into biochemical stimuli that activate intracellular signal transduction pathways. Subjecting cells to in vitro mechanical stretch can mimic cellular responses to changes in the rigidity of the extracellular matrix. Here we describe an in vitro model system that mimics stretch overload in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Muscle differentiation involves complex signaling pathways that lead to the formation of multinucleated myofibers, but the regulation of these pathways is not fully understood.
  • Mutations in the Bit-1 protein are linked to muscle weakness in infants, and research shows that Bit-1 plays a crucial role in skeletal muscle development through caspase-mediated signaling.
  • Bit-1 influences myoblast differentiation; its absence causes early expression of muscle proteins and myopathy, while maintaining its levels is necessary for proper muscle formation.
View Article and Find Full Text PDF

Objective: To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD).

Methods: We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis.

View Article and Find Full Text PDF

Background: Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed.

View Article and Find Full Text PDF

Modulation of integrin activation is important in many cellular functions including adhesion, migration, and assembly of the extracellular matrix. RSK2 functions downstream of Ras/Raf and promotes tumor cell motility and metastasis. We therefore investigated whether RSK2 affects integrin function.

View Article and Find Full Text PDF

The Myomatrix 2012 conference held April 22-24th, 2012 at the University of Nevada, Reno convened 73 international participants to discuss the dynamic relationship between muscle and its matrix in muscular dystrophy with a specific focus on congenital muscular dystrophy. Seven sessions over 2½ days defined three central themes: (1) the role of extracellular matrix proteins and compartments in development and specifically in congenital muscular dystrophy (CMD) (2) the role of extracellular matrix signaling and adhesion to membrane receptors and (3) the balance and interplay between inflammation and fibrosis as drivers of altered matrix stiffness, impaired regeneration and progressive dystrophy. This report highlights major conference findings and the translational roadmap as defined by conference attendees.

View Article and Find Full Text PDF

Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes.

View Article and Find Full Text PDF

Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells.

View Article and Find Full Text PDF

Background: Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins.

View Article and Find Full Text PDF