, a fungal pathogen causing Botrytis blight, significantly impacts greenhouse crop management due to its broad host range and infection capabilities at various growth stages. Traditional control methods, primarily reliant on fungicides, are challenged by environmental concerns and the rise of fungicide-resistant strains. This study investigates the use of beneficial bacteria as a sustainable alternative.
View Article and Find Full Text PDFBackground: The microbiome plays a fundamental role in plant health and performance. Soil serves as a reservoir of microbial diversity where plants attract microorganisms via root exudates. The soil has an important impact on the composition of the rhizosphere microbiome, but greenhouse ornamental plants are commonly grown in soilless substrates.
View Article and Find Full Text PDFUnlabelled: Conventional value-of-information (VOI) analysis assumes complete uptake of an optimal decision. We employed an extended framework that includes value-of-implementation (VOM)-the benefit of encouraging adoption of an optimal strategy-and estimated how future trials of diagnostic tests for HIV-associated tuberculosis could improve public health decision making and clinical and economic outcomes. We evaluated the clinical outcomes and costs, given current information, of 3 tuberculosis screening strategies among hospitalized people with HIV in South Africa: sputum Xpert (), sputum Xpert plus urine AlereLAM (), and sputum Xpert plus the newer, more sensitive, and costlier urine FujiLAM ().
View Article and Find Full Text PDFBackground: The DONATE HCV trial demonstrated the safety and efficacy of transplanting hearts from hepatitis C viremic (HCV+) donors. In this report, we examine the cost-effectiveness and impact of universal HCV+ heart donor eligibility in the United States on transplant waitlist time and life expectancy.
Methods: We developed a microsimulation model to compare 2 waitlist strategies for heart transplant candidates in 2018: (1) status quo (SQ) and (2) SQ plus HCV+ donors (SQ + HCV).
Developmental petal senescence is a type of programmed cell death (PCD), during which the production of ethylene is induced, the expression of PCD-related genes is upregulated, and nutrients are recycled. Autophagy is an intracellular mechanism involved in PCD modulation and nutrient cycling. As a central component of the autophagy pathway, () was previously shown as a negative regulator of petal senescence.
View Article and Find Full Text PDFThe 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling.
View Article and Find Full Text PDFHigh fertilizer rates are often applied to horticulture crop production systems to produce high quality crops with minimal time in production. Much of the nutrients applied in fertilizers are not taken up by the plant and are leached out of the containers during regular irrigation. The application of plant growth promoting rhizobacteria (PGPR) can increase the availability and uptake of essential nutrients by plants, thereby reducing nutrient leaching and environmental contamination.
View Article and Find Full Text PDFThe production of greenhouse ornamentals relies on high fertilizer inputs to meet scheduling deadlines and quality standards, but overfertilization has negative environmental impacts. The goals of this study were to identify plant-growth-promoting rhizobacteria (PGPR) that can improve greenhouse ornamental crop performance with reduced fertilizer inputs, and to identify the best measurements of plant performance for assessing the beneficial impact of PGPR on ornamentals. A high-throughput greenhouse trial was used to identify 14 PGPR isolates that improved the flower/bud number and shoot dry weight of × 'Picobella Blue' grown under low fertility conditions in peat-based media.
View Article and Find Full Text PDFWater stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated MBSA-MJ1 for its ability to increase plant growth and quality of × (petunia), (impatiens), and × (pansy) plants recovering from severe water stress.
View Article and Find Full Text PDFPetal senescence is a form of developmental programmed cell death (PCD) that is regulated by internal and environmental signals. Autophagy, a metabolic pathway that regulates intercellular nutrient recycling, is thought to play an important role in the regulation of petal senescence-associated PCD. To characterize the function of two central autophagy genes in petal senescence, we down-regulated Autophagy Gene 6 (PhATG6) and Phosphoinositide 3-Kinase (PhPI3K) using Virus-Induced Gene Silencing (VIGS) in Petunia × hybrida.
View Article and Find Full Text PDFWater deficit stress is a major contributor to the loss of ornamental crop value due to its negative effects on plant growth and flowering. In addition, post-production water stress can reduce the photosynthetic capacity of plants, negatively impacting crop quality at retail and in the consumer's home and garden. While the application of microbe-containing biostimulant products can increase stress tolerance and crop quality, the success of most commercially available biostimulants in greenhouse production systems is inconsistent.
View Article and Find Full Text PDFVirus-induced gene silencing (VIGS) uses recombinant viruses to knock down the expression of endogenous plant genes, allowing for rapid functional analysis without generating stable transgenic plants. The Tobacco rattle virus (TRV) is a popular vector for VIGS because it has a wide host range that includes Petunia × hybrida (petunia), and it induces minimal viral symptoms. Using reporter genes like chalcone synthase (CHS) in tandem with a gene of interest (GOI; pTRV2-PhCHS-GOI), it is possible to visually identify silenced flowers so that phenotyping is more accurate.
View Article and Find Full Text PDFinfects most major greenhouse crops worldwide. With its increasing resistance to conventional fungicides and the movement of the greenhouse industry toward more sustainable production practices, alternative methods of control are needed. The objective of this study was to evaluate a collection of 60 bacterial strains through both a dual-culture assay and greenhouse trials to identify strains with biocontrol activity against .
View Article and Find Full Text PDFPrevious studies have demonstrated that the freezing tolerance (FT) of grapevine was enhanced by foliar application of exogenous abscisic acid (exo-ABA), a treatment which might be incorporated into cultural practices to mitigate cold damage in vineyards. To investigate the underlying mechanisms of this response, a two-year (2017 and 2018) study was conducted to characterize the effects of exo-ABA on greenhouse-grown 'Cabernet franc' grapevine. In control grapevines, both physiological (deeper dormancy) and biochemical (sugar accumulation in buds) changes occurred, indicating that grapevines initiated cold acclimation in the greenhouse.
View Article and Find Full Text PDFThe sustainability of ornamental crop production is of increasing concern to both producers and consumers. As resources become more limited, it is important for greenhouse growers to reduce production inputs such as water and chemical fertilizers, without sacrificing crop quality. Plant growth promoting rhizobacteria (PGPR) can stimulate plant growth under resource-limiting conditions by enhancing tolerance to abiotic stress and increasing nutrient availability, uptake, and assimilation.
View Article and Find Full Text PDFBackground: Noninvasive ventilation (NIV) is commonly used in neonates. A mode of NIV called neurally adjusted ventilatory assist (NAVA) offers patient-ventilator interactions by using electrical activity of the diaphragm to control mechanical breaths. We hypothesized that the work of breathing (WOB) would decrease with NIV-NAVA.
View Article and Find Full Text PDFBackground: High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO and O measurements using lower transcutaneous electrode temperatures below 42°C.
Methods: We enrolled 20 neonates.
Non-contact ACL injuries are one of the most common injuries to the knee joint among adolescent/collegiate athletes, with sex and limb dominance being identified as risk factors. In children under 12years of age (U12), these injuries occur less often and there is no sex-bias present. This study set out to explore if sex and/or limb dominance differences exist in neuromuscular activations in U12 athletes.
View Article and Find Full Text PDFBackground: Pollination reduces flower longevity in many angiosperms by accelerating corolla senescence. This response requires hormone signaling between the floral organs and results in the degradation of macromolecules and organelles within the petals to allow for nutrient remobilization to developing seeds. To investigate early pollination-induced changes in petal gene expression, we utilized high-throughput sequencing to identify transcripts that were differentially expressed between corollas of pollinated Petunia × hybrida flowers and their unpollinated controls at 12, 18, and 24 hours after opening.
View Article and Find Full Text PDFThe outer membrane (OM) of Gram-negative bacteria is designed to exclude potentially harmful molecules. This property presents a challenge for bacteria that must secrete proteins and large glycoconjugates to grow, divide, and persist. Proteins involved in trafficking such molecules have been identified, but their precise roles are often unresolved due to the difficulty in capturing "snapshots" during the export pathway.
View Article and Find Full Text PDFVirus-induced gene silencing (VIGS) is used to down-regulate endogenous plant genes. VIGS efficiency depends on viral proliferation and systemic movement throughout the plant. Although tobacco rattle virus (TRV)-based VIGS has been successfully used in petunia ( × ), the protocol has not been thoroughly optimized for efficient and uniform gene down-regulation in this species.
View Article and Find Full Text PDFWzx flippases are crucial for bacterial cell surface polysaccharide assembly as they transport undecaprenyl pyrophosphate-linked sugar repeat units from the cytoplasmic to the periplasmic leaflets of the inner membrane (IM) for final assembly. Our recently reported three-dimensional (3D) model structure of Wzx from Pseudomonas aeruginosa PAO1 (WzxPa) displayed a cationic internal vestibule and functionally essential acidic amino acids within transmembrane segment bundles. Herein, we examined the intrinsic transport function of WzxPa following its purification and reconstitution in phospholipid liposomes.
View Article and Find Full Text PDFThe flower has a finite lifespan that is controlled largely by its role in sexual reproduction. Once the flower has been pollinated or is no longer receptive to pollination, the petals are programmed to senesce. A majority of the genes that are up-regulated during petal senescence, in both ethylene-sensitive and -insensitive flowers, encode proteins involved in the degradation of nucleic acids, proteins, lipids, fatty acids, and cell wall and membrane components.
View Article and Find Full Text PDFBackground: Metastatic prostate cancer is an incurable disease. During the development of this disease, prostate cancer cells enter the bloodstream as single cells or clusters of cells. Prostate fibroblasts, a cancer-promoting cell type in the prostate cancer microenvironment, could in theory incorporate into these migrating cell clusters or follow cancer cells into the bloodstream through holes in the tumor vasculature.
View Article and Find Full Text PDF