The ribosome plays a crucial role in translating mRNA into protein; however, the genetic code extends beyond merely specifying amino acids. Upon translation, codons, the three-nucleotide sequences interpreted by ribosomes, have regulatory properties affecting mRNA stability, a phenomenon known as codon optimality. Codon optimality has been previously observed in vertebrates during embryogenesis, where specific codons can influence the stability and degradation rates of mRNA transcripts.
View Article and Find Full Text PDFBackground: The regulation of messenger RNA (mRNA) stability has a profound impact on gene expression dynamics during embryogenesis. For example, in animals, maternally deposited mRNAs are degraded after fertilization to enable new developmental trajectories. Regulatory sequences in 3' untranslated regions (3'UTRs) have long been considered the central determinants of mRNA stability.
View Article and Find Full Text PDFEarly embryonic development is driven exclusively by maternal gene products deposited into the oocyte. Although critical in establishing early developmental programs, maternal gene functions have remained elusive due to a paucity of techniques for their systematic disruption and assessment. CRISPR-Cas13 systems have recently been employed to degrade RNA in yeast, plants, and mammalian cell lines.
View Article and Find Full Text PDFmRNA translation decodes nucleotide into amino acid sequences. However, translation has also been shown to affect mRNA stability depending on codon composition in model organisms, although universality of this mechanism remains unclear. Here, using three independent approaches to measure exogenous and endogenous mRNA decay, we define which codons are associated with stable or unstable mRNAs in human cells.
View Article and Find Full Text PDF