Publications by authors named "Michelle Kreke"

We describe an approach to cancer therapy based on exploitation of common losses of genetic material in tumor cells (loss of heterozygosity) (Basilion et al., 1999; Beroukhim et al., 2010).

View Article and Find Full Text PDF

Cardiosphere-derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC-EVs), including exosomes, which alter macrophage polarization. We questioned whether short non-coding RNA species of unknown function within CDC-EVs contribute to cardioprotection. The most abundant RNA species in CDC-EVs is a Y RNA fragment (EV-YF1); its relative abundance in CDC-EVs correlates with CDC potency Fluorescently labeled EV-YF1 is actively transferred from CDCs to target macrophages via CDC-EVs.

View Article and Find Full Text PDF

Aims: Naturally secreted nanovesicles known as exosomes are required for the regenerative effects of cardiosphere-derived cells (CDCs), and exosomes mimic the benefits of CDCs in rodents. Nevertheless, exosomes have not been studied in a translationally realistic large-animal model. We sought to optimize delivery and assess the efficacy of CDC-secreted exosomes in pig models of acute (AMI) and convalescent myocardial infarction (CMI).

View Article and Find Full Text PDF

Background: Infusion of allogeneic cardiosphere-derived cells (allo-CDCs) postreperfusion elicits cardioprotective cellular postconditioning in pigs with acute myocardial infarction. However, the long-term effects of allo-CDCs have not been assessed. We performed a placebo-controlled pivotal study for long-term evaluation, as well as shorter-term mechanistic studies.

View Article and Find Full Text PDF

Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs) either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI) to assess structural and physiological outcomes.

View Article and Find Full Text PDF

Background: Preclinical studies in rodents and pigs indicate that the self-assembling microtissues known as cardiospheres may be more effective than dispersed cardiosphere-derived cells. However, the more desirable intracoronary route has been assumed to be unsafe for cardiosphere delivery: Cardiospheres are large (30-150 μm), raising concerns about likely microembolization. We questioned these negative assumptions by evaluating the safety and efficacy of optimized intracoronary delivery of cardiospheres in a porcine model of convalescent myocardial infarction.

View Article and Find Full Text PDF

Background: Intracoronary delivery of cardiosphere-derived cells (CDCs) has been demonstrated to be safe and effective in porcine and human chronic myocardial infarction. However, intracoronary delivery of CDCs after reperfusion in acute myocardial infarction has never been assessed in a clinically-relevant large animal model. We tested CDCs as adjunctive therapy to reperfusion in a porcine model of myocardial infarction.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) in the CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction (CADUCEUS) trial revealed that cardiosphere-derived cells (CDCs) decrease scar size and increase viable myocardium after myocardial infarction (MI), but MRI has not been validated as an index of regeneration after cell therapy. We tested the validity of contrast-enhanced MRI in quantifying scarred and viable myocardium after cell therapy in a porcine model of convalescent MI.

Methods And Results: Yucatan minipigs underwent induction of MI and 2-3 weeks later were randomized to receive intracoronary infusion of 12.

View Article and Find Full Text PDF

Heart disease is a major cause of morbidity and mortality. Cellular therapies hold significant promise for patients with heart disease. Heart-derived progenitor cells are capable of repairing a diseased heart through modulation of growth factor milieu and temporary engraftment leading to endogenous repair.

View Article and Find Full Text PDF

Perfusion culture of osteoprogenitor cells seeded within porous scaffolds suitable for bone tissue engineering is known to enhance deposition of a bone-like extracellular matrix, and the underlying mechanism is thought to involve flow-induced activation of mechanotransductive signaling pathways. Basic studies have shown that mechanotransduction is enhanced by impulse flow and may be mediated through autocrine signaling pathways. To test this, an intermittent flow regimen (5 min on/5 min off ) that exerts impulses on adherent cells and permits accumulation of secreted factors in the cell microenvironment was compared to continuous flow for its ability to stimulate phosphorylation of ERK and p38, synthesis of prostaglandin E2 (PGE2), and expression of mRNA for collagen 1alpha1 (Col-1alpha1), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN).

View Article and Find Full Text PDF

Electrospinning is a promising method to construct fused-fiber biomaterial scaffolds for tissue engineering applications, but the efficacy of this approach depends on how substrate topography affects cell function. Previously, it has been shown that linear, parallel raised features with length scales of 0.5-2 microm direct cell orientation through the phenomenon of contact guidance, and enhance phenotypic markers of osteoblastic differentiation.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs) are multipotent progenitor cells with a capacity to form bone tissue in vivo, and to differentiate into the osteoblastic lineage in vitro. Drawing on evidence that bone is mechanosensitive and mechanical stimuli are anabolic, we postulate that proliferation and osteoblastic differentiation of BMSCs may be stimulated by mechanical forces. In this study, BMSCs cultured in the presence of osteogenic factors (dexamethasone, beta-glycerophosphate, and ascorbate) were stimulated repeatedly (every second day) with shearing flow (1.

View Article and Find Full Text PDF

Electrostatic layer-by-layer film assembly is an attractive way to non-covalently incorporate proteins and bioactive moieties into the surface of conventional biomaterials. Selection of polycationic and polyanionic components and deposition conditions can be used to control the interfacial properties, and through them protein adsorption, cell adhesion, and tissue development. In this study the polycation was poly(allylamine hydrochloride) (PAH), which is a weak base and consequently adsorbs at interfaces in a pH-dependent manner, and the polyanion was heparin, which is capable of interacting with many adhesion ligands and growth factors.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs) are a promising component for engineered bone tissues, but in vitro formation of a bonelike tissue requires culture conditions that direct these multipotent cells toward osteoblastic maturation. Fluid flow has been postulated to stimulate bone tissue development in vivo, but the effect of shear stress on proliferation and differentiation of osteoprogenitor cell cultures in vitro has not been examined closely. In this study BMSCs were cultured on fibronectin-coated substrates and exposed intermittently (for 30 min 3, 5, 7, 9, 11, and 13 days after seeding) to a spatially dependent range of shear stresses (0.

View Article and Find Full Text PDF