Unlabelled: Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis and inflammation. Here we discovered a pivotal role of Raver1 as an essential regulator of pre-mRNA splicing, expression, and functionality, and the subsequent caspase-8-dependent inflammatory cell death.
View Article and Find Full Text PDFRNA sequencing (RNA-seq) has become a standard method for profiling gene expression, yet genomic DNA (gDNA) contamination carried over to the sequencing library poses a significant challenge to data integrity. Detecting and correcting this contamination is vital for accurate downstream analyses. Particularly, when RNA samples are scarce and invaluable, it becomes essential not only to identify but also to correct gDNA contamination to maximize the data's utility.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy arising from immature thymocytes. Unlike well-known oncogenic transcription factors, such as NOTCH1 and MYC, the involvement of chromatin remodeling factors in T-ALL pathogenesis is poorly understood. Here, we provide compelling evidence on how SWI/SNF chromatin remodeling complex contributes to human T-ALL pathogenesis.
View Article and Find Full Text PDFMultiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells.
View Article and Find Full Text PDFCD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression.
View Article and Find Full Text PDFRelapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4CD8CD25CD44) thymic progenitors harbored L-ICs.
View Article and Find Full Text PDFHuman bone marrow failure (BMF) syndromes result from the loss of hematopoietic stem and progenitor cells (HSPC), and this loss has been attributed to cell death; however, the cell death triggers, and mechanisms remain unknown. During BMF, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) increase. These ligands are known to induce necroptosis, an inflammatory form of cell death mediated by RIPK1, RIPK3, and MLKL.
View Article and Find Full Text PDFResistance mechanisms have curbed the potential of immune checkpoint blockade (ICB) therapies. Understanding mechanisms that contribute to this resistance should reveal new targets for combinatorial therapy. Tank-binding kinase 1 (TBK1) represents such a target.
View Article and Find Full Text PDFRelapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib.
View Article and Find Full Text PDFTNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1's death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF that results in RIPK1-dependent cell death remains unclear. To address this, we employed in vitro systems and murine models of T cell-dependent transplant or tumor rejection in which target cell susceptibility to RIPK1-dependent cell death could be genetically altered.
View Article and Find Full Text PDFGlucocorticoid (GC) resistance remains a clinical challenge in pediatric acute lymphoblastic leukemia where response to GC is a reliable prognostic indicator. To identify GC resistance pathways, we conducted a genome-wide, survival-based, short hairpin RNA screen in murine T-cell acute lymphoblastic leukemia (T-ALL) cells. Genes identified in the screen interfere with cyclic adenosine monophosphate (cAMP) signaling and are underexpressed in GC-resistant or relapsed ALL patients.
View Article and Find Full Text PDFSynthetic glucocorticoids (GCs), such as dexamethasone and prednisone, remain key components of therapy for patients with lymphoid malignancies. For pediatric patients with acute lymphoblastic leukemia (ALL), response to GCs remains the most reliable prognostic indicator; failure to respond to GC correlates with poor event-free survival. To uncover GC resistance mechanisms, we performed a genome-wide, survival-based short hairpin RNA screen and identified the orphan nuclear receptor estrogen-related receptor-β (ESRRB) as a critical transcription factor that cooperates with the GC receptor (GR) to mediate the GC gene expression signature in mouse and human ALL cells.
View Article and Find Full Text PDFApoptosis and necroptosis are two regulated cell death mechanisms; however, the interaction between these cell death pathways in vivo is unclear. Here we used cerebral ischemia/reperfusion as a model to investigate the interaction between apoptosis and necroptosis. We show that the activation of RIPK1 sequentially promotes necroptosis followed by apoptosis in a temporally specific manner.
View Article and Find Full Text PDFPtpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/β release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
May 2021
Background And Aims: Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- κB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice.
Methods: Human IBD specimens were stained for p65 and cleaved caspase-3.
The NOTCH (1-4) family of receptors are highly conserved and are critical in regulating many developmental processes and in the maintenance of tissue homeostasis. Our laboratory and numerous others have demonstrated that aberrant NOTCH signaling is oncogenic in several different cancer types. Conversely, there is also evidence that NOTCH can also function as a tumor suppressor.
View Article and Find Full Text PDFIn this issue of , Wagner and colleagues implicate Rip1 kinase (Ripk1)–mediated necroptosis in myelodysplastic syndrome (MDS)-like disease in mice and detect increased RIPK1 expression and mixed lineage kinase domain-like pseudokinase (MLKL) activation in human MDS samples.
View Article and Find Full Text PDFLimited proteolysis of gasdermin D (GSDMD) generates an N-terminal pore-forming fragment that controls pyroptosis in macrophages. GSDMD is processed via inflammasome-activated caspase-1 or -11. It is currently unknown whether macrophage GSDMD can be processed by other mechanisms.
View Article and Find Full Text PDFPurpose: Effective targeted therapies are lacking for refractory and relapsed T-cell acute lymphoblastic leukemia (T-ALL). Suppression of the NOTCH pathway using gamma-secretase inhibitors (GSI) is toxic and clinically not effective. The goal of this study was to identify alternative therapeutic strategies for T-ALL.
View Article and Find Full Text PDFIntestinal epithelial cell (IEC) death is a common feature of inflammatory bowel disease (IBD) that triggers inflammation by compromising barrier integrity. In many patients with IBD, epithelial damage and inflammation are TNF-dependent. Elevated TNF production in IBD is accompanied by increased expression of the gene, which encodes A20, a negative feedback regulator of NF-κB.
View Article and Find Full Text PDFNeutrophil extracellular trap (NET) formation can generate short-term, functional anucleate cytoplasts and trigger loss of cell viability. We demonstrated that the necroptotic cell death effector mixed lineage kinase domain-like (MLKL) translocated from the cytoplasm to the plasma membrane and stimulated downstream NADPH oxidase-independent ROS production, loss of cytoplasmic granules, breakdown of the nuclear membrane, chromatin decondensation, histone hypercitrullination, and extrusion of bacteriostatic NETs. This process was coordinated by receptor-interacting protein kinase-1 (RIPK1), which activated the caspase-8-dependent apoptotic or RIPK3/MLKL-dependent necroptotic death of mouse and human neutrophils.
View Article and Find Full Text PDFThe serine/threonine kinase RIPK1 has numerous biological and pathological functions, mediating prosurvival as well as prodeath apoptotic and necroptotic signaling pathways downstream of various receptors, including death receptors and Toll-like receptors (TLRs). RIPK1 has been implicated in various diseases, including ischemia-reperfusion injury and inflammatory bowel disease (IBD). The recent generation of RIPK1 kinase inactive mice has enabled us to genetically interrogate the role of RIPK1 kinase-mediated necroptosis in disease models.
View Article and Find Full Text PDFCellular transformation is accompanied by extensive rewiring of many biological processes leading to augmented levels of distinct types of cellular stress, including proteotoxic stress. Cancer cells critically depend on stress-relief pathways for their survival. However, the mechanisms underlying the transcriptional initiation and maintenance of the oncogenic stress response remain elusive.
View Article and Find Full Text PDF