Polymers (Basel)
April 2022
The influence of processing intumescent bio-based poly(lactic acid) (PLA) composites by injection and fused filament fabrication (FFF) was evaluated. A raw (ANa) and two acidic-activated (AH2 and AH5) montmorillonites were added to the intumescent formulation, composed by lignin and ammonium polyphosphate, in order to evaluate the influence of the strength and the nature (Brønsted or Lewis) of their acidic sites on the fire behavior of the composites. The thermal stability and the volatile thermal degradation products of the composites were assessed.
View Article and Find Full Text PDFPolymers (Basel)
November 2020
A raw montmorillonite (Mt) was submitted to different acidic activation times in order to investigate the influence of the strength and the nature (Brønsted and Lewis) of acidic sites on the synergistic action with an intumescent formulation (IF) composed of ammonium polyphosphate (APP) and pentaerythritol (PER) when incorporated into a polypropylene (PP) matrix. The acidity of the Mt samples was quantified by ammonia temperature-programmed desorption (TPD-NH3) and Fourier transform infrared spectroscopy (FTIR) with pyridine adsorption. The mineral clays were also characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption analysis and particle size distribution.
View Article and Find Full Text PDFPolymers (Basel)
December 2019
Several studies show a synergistic effect between intumescent formulations and aluminosilicates, such as zeolites and clays, but little is known about the effect of acidity of these additives on the synergistic action. In this work, H-ZSM-5 zeolite was submitted to desilication treatments for 30 min and for 2 h, and silicalite-1 was synthesized. The objective was to obtain samples of equivalent crystalline structure, but with different amounts of acid sites, in order to evaluate the effect of acid concentration of H-ZSM-5 zeolites on the synergistic action with an intumescent formulation composed by ammonium polyphosphate and pentaerythritol in polypropylene.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2016
Rationale: The study of natural products by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is an important strategy for the characterization of the major fragmentation reactions which can then help to determine the composition of complex mixtures. Application of ESI-MS/MS to a series of isopimarane diterpenes from Velloziaceae allowed the rationalization of their fragmentation mechanisms.
Methods: Velloziaceae diterpenes were isolated by silica gel column chromatography and investigated by ESI-MS/MS analysis.