Publications by authors named "Michelle Huth"

Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear.

View Article and Find Full Text PDF

Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor and its premature termination codon-encoding isoform ( ).

View Article and Find Full Text PDF

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary.

View Article and Find Full Text PDF

The pluripotent ground state is defined as a basal state free of epigenetic restrictions, which influence lineage specification. While naive embryonic stem cells (ESCs) can be maintained in a hypomethylated state with open chromatin when grown using two small-molecule inhibitors (2i)/leukemia inhibitory factor (LIF), in contrast to serum/LIF-grown ESCs that resemble early post-implantation embryos, broader features of the ground-state pluripotent epigenome are not well understood. We identified epigenetic features of mouse ESCs cultured using 2i/LIF or serum/LIF by proteomic profiling of chromatin-associated complexes and histone modifications.

View Article and Find Full Text PDF