NASA's Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar mission which will produce near global (51.6°S to 51.6°N) maps of forest structure and above-ground biomass density during its 2-year mission.
View Article and Find Full Text PDFTropical secondary forests (TSF) are a global carbon sink of 1.6 Pg C/year. However, TSF carbon uptake is estimated using chronosequence studies that assume differently aged forests can be used to predict change in aboveground biomass density (AGBD) over time.
View Article and Find Full Text PDFBackground: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored.
View Article and Find Full Text PDFA topic of recurring interest in ecological research is the degree to which vegetation structure influences the distribution and abundance of species. Here we test the applicability of remote sensing, particularly novel use of waveform lidar measurements, for quantifying the habitat heterogeneity of a contiguous northern hardwoods forest in the northeastern United States. We apply these results to predict the breeding habitat quality, an indicator of reproductive output of a well-studied Neotropical migrant songbird, the Black-throated Blue Warbler (Dendroica caerulescens).
View Article and Find Full Text PDF