The endemic nature of the Ebola virus disease in Africa underscores the need for prophylactic and therapeutic drugs that are affordable and easy to administer. Through a phenotypic screening employing viral pseudotypes and our in-house chemical library, we identified a promising hit featuring a thiophene scaffold, exhibiting antiviral activity in the micromolar range. Following up on this thiophene hit, a new series of compounds that retain the five-membered heterocyclic scaffold while modifying several substituents was synthesized.
View Article and Find Full Text PDFOver the last decade, the emergence of several zoonotic viruses has demonstrated that previously unknown or neglected pathogens have the potential to cause epidemics and therefore to pose a threat to global public health. Even more concerning are the estimated 1.7 million still-undiscovered viruses present in the natural environment or 'global virome', with many of these as-yet uncharacterized viruses predicted to be pathogenic for humans.
View Article and Find Full Text PDFEbola virus (EBOV) is a single-strand RNA virus belonging to the family, which has been associated to most Ebola virus disease outbreaks to date, including the West African and the North Kivu epidemics between 2013 and 2022. This unprecedented health emergency prompted the search for effective medical countermeasures. Following up on the carbazole hit identified in our previous studies, we synthetized a new series of compounds, which demonstrated to prevent EBOV infection in cells by acting as virus entry inhibitors.
View Article and Find Full Text PDFNipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection.
View Article and Find Full Text PDFNipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe disease in humans and livestock. Due to its high pathogenicity in humans and the lack of available vaccines and therapeutics, NiV needs to be handled in biosafety level 4 (BSL-4) laboratories. Safe inactivation of samples containing NiV is thus necessary to allow further processing in lower containment areas.
View Article and Find Full Text PDF