Congenital mutations in human small heat shock protein HSPB1 (HSP27) have been linked to Charcot-Marie-Tooth disease, a commonly occurring peripheral neuropathy. Understanding the molecular mechanism of such mutations is indispensable towards developing future therapies for this currently incurable disorder. Here we describe the physico-chemical properties of the autosomal dominant HSPB1 mutants R127W, S135F and R136W.
View Article and Find Full Text PDFSmall heat-shock proteins (sHSPs) are a conserved group of molecular chaperones with important roles in cellular proteostasis. Although sHSPs are characterized by their small monomeric weight, they typically assemble into large polydisperse oligomers that vary in both size and shape but are principally composed of dimeric building blocks. These assemblies can include different sHSP orthologues, creating additional complexity that may affect chaperone activity.
View Article and Find Full Text PDFSmall heat shock proteins are ATP-independent molecular chaperones. Their function is to bind partially unfolded proteins under stress conditions. In vivo, members of this chaperone family are known to preferentially assemble together forming large, polydisperse heterooligomers.
View Article and Find Full Text PDFHSPB6 is a member of the human small heat shock protein (sHSP) family, a conserved group of molecular chaperones that bind partially unfolded proteins and prevent them from aggregating. In vertebrate sHSPs the poorly structured N-terminal domain has been implicated in both chaperone activity and the formation of higher-order oligomers. These two functionally important properties are likely intertwined at the sequence level, complicating attempts to delineate the regions that define them.
View Article and Find Full Text PDFATP-independent small heat-shock proteins (sHSPs) are an essential component of the cellular chaperoning machinery. Under both normal and stress conditions, sHSPs bind partially unfolded proteins and prevent their irreversible aggregation. Canonical vertebrate sHSPs, such as the α-crystallins, form large polydisperse oligomers from which smaller, functionally active subspecies dissociate.
View Article and Find Full Text PDF