Herein we describe a scalable approach to the decalin moiety of maklamicin. Key to the synthesis is an intramolecular Diels-Alder (IMDA) reaction that proceeds via an -axial transition state to generate the desired stereochemistry. We explored the diastereoselectivity of the IMDA reaction as a function of both chiral catalysis and acyclic precursor stereochemistry.
View Article and Find Full Text PDFThe discovery of chlorothricin (1) defined a new family of microbial metabolites with potent antitumor antibiotic properties collectively referred to as spirotetronate polyketides. These microbial metabolites are structurally distinguished by the presence of a spirotetronate motif embedded within a macrocyclic core. Glycosylation at the periphery of this core contributes to the structural complexity and bioactivity of this motif.
View Article and Find Full Text PDFNeurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications.
View Article and Find Full Text PDFAn enantioselective synthesis of the core framework of neurotrophic Illicium majucin-type sesquiterpenes is described here. This strategy is based on an organocatalyzed asymmetric Robinson annulation and provides an efficient approach for a diversity-oriented synthesis of Illicium natural products that holds remarkable therapeutic potential for neurodegenerative diseases.
View Article and Find Full Text PDFMajucin-type sesquiterpenes from Illicium sp., such as jiadifenolide (2), jiadifenin (3), and (1R,10S)-2-oxo-3,4-dehydroxyneomajucin (4, ODNM), possess a complex caged chemical architecture and remarkable neurotrophic activities. As such, they represent attractive small-molecule leads against various neurodegenerative diseases.
View Article and Find Full Text PDFFusarisetin A (1) is a recently isolated natural product that displays an unprecedented chemical motif and remarkable bioactivities as a potent cancer migration inhibitor. We describe here our studies leading to an efficient and scalable total synthesis of 1. Essential to the strategy was the development of a new route for the formation of a trans-decalin moiety of this compound and the application of an oxidative radical cyclization (ORC) reaction that produces fusarisetin A (1) from equisetin (2) via a bio-inspired process.
View Article and Find Full Text PDFThe first enantioselective synthesis of (-)-jiadifenin (1), a potent neurite outgrowth promoter isolated from the Illicium species, is described. The synthetic strategy builds upon bicyclic motif 6, which represents the AB ring of the natural product and proceeds in 19 steps and 1.1% overall yield.
View Article and Find Full Text PDF