Knockdown (KD) of lipid droplet (LD) protein perilipin 2 (PLIN2) in beta cells impairs glucose-stimulated insulin secretion (GSIS) and mitochondrial function. Here, we addressed a pathway responsible for compromised mitochondrial integrity in PLIN2 KD beta cells. In PLIN2 KD human islets, mitochondria were fragmented in beta cells but not in alpha cells.
View Article and Find Full Text PDFLipid droplets (LDs), crucial regulators of lipid metabolism, accumulate during oocyte development. However, their roles in fertility remain largely unknown. During Drosophila oogenesis, LD accumulation coincides with the actin remodeling necessary for follicle development.
View Article and Find Full Text PDFProstaglandins (PGs), locally acting lipid signals, regulate female reproduction, including oocyte development. However, the cellular mechanisms of PG action remain largely unknown. One cellular target of PG signaling is the nucleolus.
View Article and Find Full Text PDFIn this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death.
View Article and Find Full Text PDFThe Janus kinase (JAK) pathway is an essential, highly re-utilized developmental signaling cascade found in most metazoans. In vertebrates, the JAK intracellular cascade mediates signaling by dozens of cytokines and growth factors. In Drosophila, the Unpaired (Upd) family, encoded by three tandemly duplicated genes, is the only class of ligands associated with JAK stimulation.
View Article and Find Full Text PDFThe Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway is one of a limited number of signaling cascades that is extensively utilized for many developmental and homeostatic functions. The JAK/STAT pathway is evolutionarily conserved from insects to mammals, with homologous transduction machinery in each. Yet the mammalian pathway is composed of multiple members for each family of proteins, while flies have only a single homologue of most pathway components.
View Article and Find Full Text PDF