Peatlands cover approximately 12% of the Canadian landscape and play an important role in the carbon cycle through their centennial- to millennial-scale storage of carbon under waterlogged and anoxic conditions. In recognizing the potential of these ecosystems as natural climate solutions and therefore the need to include them in national greenhouse gas inventories, the Canadian Model for Peatlands module (CaMP v. 2.
View Article and Find Full Text PDFClimate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change.
View Article and Find Full Text PDFHigh-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.
View Article and Find Full Text PDFNorthern peatlands are a major component of the global carbon (C) cycle. Widespread climate-driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high-resolution chronologies.
View Article and Find Full Text PDFBackground: Black spruce ( (Mill.) BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation, known as the paludification process, has been shown to induce forest growth decline. The continuously evolving environmental conditions (e.
View Article and Find Full Text PDFPeatlands are significant carbon (C) stores, playing a key role in nature-based climate change mitigation. While the effectiveness of non-forested peatlands as C reservoirs is increasingly recognized, the C sequestration function of forested peatlands remains poorly documented, despite their widespread distribution. Here, we evaluate the C sequestration potential of pristine boreal forested peatlands over both recent and millennial timescales.
View Article and Find Full Text PDFThe cost-effective mitigation of climate change through nature-based carbon dioxide removal strategies has gained substantial policy attention. Inland and coastal wetlands (specifically boreal, temperate and tropical peatlands; tundra; floodplains; freshwater marshes; saltmarshes; and mangroves) are among the most efficient natural long-term carbon sinks. Yet, they also release methane (CH) that can offset the carbon they sequester.
View Article and Find Full Text PDFDue to anthropogenic emissions and changes in land use, trees are now exposed to atmospheric levels of [[Formula: see text]] that are unprecedented for 650,000 y [Lüthi et al. (2008) 453:379-382] (thousands of tree generations). Trees are expected to acclimate by modulating leaf-gas exchanges and alter water use efficiency which may result in forest productivity changes.
View Article and Find Full Text PDFTestate amoebae are abundant in the surface layers of northern peatlands. Analysis of their fossilized shell (test) assemblages allows for reconstructions of local water-table depths (WTD). We have reconstructed WTD dynamics for five peat cores from peatlands ranging in distance from the Athabasca bituminous sands (ABS) region in western Canada.
View Article and Find Full Text PDFPermafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation.
View Article and Find Full Text PDFThe authors carried out a time-series study to determine whether short-term increases in the concentrations of spores were associated with emergency department visits from asthma among children 0 to 9 years of age in Montreal, 1994-2004. Concentrations of spores were obtained from one sampling monitor. The authors used parametric Poisson models to model the association between daily admissions to emergency rooms for asthma and ambient exposures to a variety of spores, adjusting for secular trends, changes in weather, and chemical pollutants.
View Article and Find Full Text PDF(210)Pb and (137)Cs dating techniques are used to characterise recent peat accumulation rates of two minerotrophic peatlands located in the La Grande Rivière hydrological watershed, in the James Bay region (Canada). Several cores were collected during the summer 2005 in different parts of the two selected peatlands. These minerotrophic patterned peatlands are presently affected by erosion processes, expressed by progressive mechanical destruction of their pools borders.
View Article and Find Full Text PDFContext And Objective: Asthma among children is a major public health problem worldwide. There are increasing number of studies suggesting a possible association between allergenic pollen and exacerbations of asthma. In the context of global climate change, a number of future climate and air pollution scenarios predict increases in concentrations of pollen, an extension of the pollen season, and an increase in the allergenicity of pollen.
View Article and Find Full Text PDFThe aim of this study is to evaluate the influence of meteorological factors on Ambrosia pollen concentrations and its impact on medical consultations for allergic rhinitis of residents from various socio-economic levels in Montréal (Québec, Canada) between 1994 and 2002. The study was conducted to recognize the sensitivity of pollen productivity to daily climate variability in order to estimate the consequences on human health vulnerability in the context of global climate change. Information related to medical consultations for allergic rhinitis due to pollen comes from the Quebec Health Insurance Board (Régie de l'assurance-maladie du Québec).
View Article and Find Full Text PDF