Available guidance values to interpret individual-level biomonitoring data (ILBD) for the sum of urinary inorganic-related arsenic species (SUIAS) are generally based on population statistical descriptors and not on a predetermined exposure level that should not be exceeded. The objective of this study was thus to propose a range of SUIAS concentrations, reflecting an exposure corresponding to WHO's provisional guideline value (PGV) for arsenic in drinking water (10 μg/L), within which an exposure-based biomonitoring guidance value can be identified. METHOD A comprehensive literature review was carried out in order to identify studies that were relevant to the determination of a guidance value.
View Article and Find Full Text PDFIn Nunavik (Northern Quebec, Canada), some mining projects are envisioned, that could increase the contamination of the environment by various chemicals, including rare earth elements (REEs), and implicitly Inuit population exposure. The objective of this study was to determine the baseline biological exposure of the population to these elements, before the potential mining development occurs. In the framework of the 2017 Qanuilirpitaa? Inuit health survey, urine samples were obtained from a representative sample of the adult Nunavik population, which were used to constitute 30 pooled samples according to age, sex and Nunavik subregions.
View Article and Find Full Text PDFThe aim of this study was to assess the impact of exposure to tap water lead concentration ([Pb]) occurring in schools or daycares on blood lead level (BLL) of attending children. Given the potentially wide variations in space and time of ([Pb]) documented in the literature, a simple probabilistic toxicokinetic (STK) model that allows the simulation of the time-varying evolution of BLL in response to these variations was developed. Thus, basic toxicokinetic equations were assembled to simulate BLL in a typical infant, toddler and pupil.
View Article and Find Full Text PDFThe Canadian Health Measures Survey (CHMS), an ongoing national health survey conducted in two-year cycles, collects extensive biomonitoring data that is used to assess the exposure of Canadians to environmental chemicals of concern. Combining data from multiple cycles of the CHMS allows for the calculation of robust regional estimates of chemical concentrations in blood and urine. The objective of this work was to compare biomarkers of exposure to several environmental chemicals for the provinces of Quebec and Ontario, two major CHMS regions, as well as the entire CHMS (representing Canada) minus Quebec (CMQ), and the entire CHMS minus Ontario (CMO), and to interpret differences between regions.
View Article and Find Full Text PDFInt J Hyg Environ Health
March 2014
Asbestos-related cancer risk is usually a concern restricted to occupational settings. However, recent published data on asbestos environmental concentrations in Thetford Mines, a mining city in Quebec, Canada, provided an opportunity to undertake a prospective cancer risk assessment in the general population exposed to these concentrations. Using an updated Berman and Crump dose-response model for asbestos exposure, we selected population-specific potency factors for lung cancer and mesothelioma.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
October 2014
Acrylamide (AA) is a probable human carcinogen found in several foods. Little information is available regarding exposure of adolescents, a subgroup potentially consuming more AA-rich foods. We investigated the relationship between dietary AA intake and levels of biomarkers of exposure (urinary metabolites and hemoglobin adducts) in 195 non-smoking teenagers of Montreal Island aged 10-17 years.
View Article and Find Full Text PDFThe distribution of acrylamide in food items frequently consumed by Canadian adolescents was determined along with estimates of their contribution to the overall dietary intake of acrylamide. A total of 196 non-smoking adolescents (10-17 years old) were recruited in Montreal Island population, Canada. Participants were invited to fill out a 2-day food diary and a food frequency questionnaire over the last month.
View Article and Find Full Text PDFRecent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline.
View Article and Find Full Text PDFThis paper presents Biomonitoring Equivalents (BEs) for inorganic arsenic. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments. This study reviews available health-based exposure guidance values for arsenic based on recent evaluations from the United States Environmental Protection Agency (US EPA), US Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada (HC).
View Article and Find Full Text PDFRecent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite(s) in a biological medium (blood, urine, or other medium) consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments.
View Article and Find Full Text PDFRecent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
December 2009
Recent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of an environmental chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments.
View Article and Find Full Text PDFRecent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments.
View Article and Find Full Text PDFRecent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments.
View Article and Find Full Text PDF