Publications by authors named "Michelle G Hotchkiss"

Identifying xenobiotics that interrupt the thyroid axis has significant public health implications, given that thyroid hormones are required for brain development. As such, some developmental and reproductive toxicology (DART) studies now require or recommend serum total thyroxine (T4) measurements in pregnant, lactating, and developing rats. However, serum T4 concentrations are normally low in the fetus and pup which makes quantification difficult.

View Article and Find Full Text PDF

Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU).

View Article and Find Full Text PDF

Adverse neurodevelopmental consequences remain a primary concern when evaluating the effects of thyroid hormone (TH) disrupting chemicals. Though the developing brain is a known target of TH insufficiency, the relationship between THs in the serum and the central nervous system is not well characterized. To address this issue, dose response experiments were performed in pregnant rats using the goitrogen propylthiouracil (PTU) (dose range 0.

View Article and Find Full Text PDF

Previous work has shown that a single oral administration of atrazine (ATR), a chlorotriazine herbicide, causes rapid increases in plasma adrenocorticotropic hormone (ACTH), serum corticosterone (CORT) and progesterone. The mechanism for these effects is unknown. To test whether administration of ATR causes hypothalamic-pituitary-adrenal (HPA) axis activation through the production of a generalized stress response resulting from gastrointestinal distress, we conducted both conditioned taste avoidance (CTA) and pica behavior experiments.

View Article and Find Full Text PDF

Few studies have investigated the long-term effects of atrazine (ATR) following in utero exposure. We evaluated the effects of gestational exposure of Sprague Dawley dams to ATR (0, 1, 5, 20, or 100mg/kg-d) on the reproductive development of male offspring. We also quantified the distribution of ATR and its chlorinated metabolites in maternal, fetal, and neonatal fluid and tissue samples following gestational and/or lactational exposure.

View Article and Find Full Text PDF

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was introduced in the 1950s as a broad spectrum herbicide, and remains one of the most widely used herbicides in the United States. Several studies have suggested that atrazine modifies steroidogenesis and may disrupt reproductive function and development in a variety of species. A primary concern has been whether atrazine increases the synthesis of estrogens, perhaps by enhancing aromatase gene expression and activity.

View Article and Find Full Text PDF

The U.S. Environmental Protection Agency is currently validating assays that will be used in a Tier I Screening Battery to detect endocrine disrupting chemicals.

View Article and Find Full Text PDF