Publications by authors named "Michelle Erickson"

Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder with profoundly debilitating symptoms with no FDA-approved cure or therapeutic. Brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin receptor kinase B (TrkB), have a well-established role as regulators of synaptic plasticity, dendritic outgrowth and spine formation. Previously, we reported that the association of postsynaptic density protein 95 (PSD-95) with TrkB is critical for intact BDNF signaling in the AS mouse model, as illustrated by attenuated PLCγ and PI3K signaling and intact MAPK pathway signaling.

View Article and Find Full Text PDF

Brain microvascular dysfunction is an important feature of Alzheimer's disease (AD). To better understand the brain microvascular molecular signatures of AD, we processed and analyzed isolated human brain microvessels by data-independent acquisition liquid chromatography with tandem mass spectrometry (DIA LC-MS/MS) to generate a quantitative dataset at the peptide and protein level. Brain microvessels were isolated from parietal cortex grey matter using protocols that preserve viability for downstream functional studies.

View Article and Find Full Text PDF
Article Synopsis
  • The blood-brain barrier (BBB) protects the brain from harmful substances but also complicates drug development for central nervous system (CNS) conditions.
  • The review discusses how various transport mechanisms work, such as lipid solubility and different transport systems, which affect drug delivery to the brain.
  • It also explores how diseases can disrupt the BBB, allowing for potential treatment methods, and highlights the historical significance of the BBB in drug delivery strategies.
View Article and Find Full Text PDF

Serum amyloid A (SAA) proteins are highly conserved lipoproteins that are notoriously involved in the acute phase response and systemic amyloidosis, but their biological functions are incompletely understood. Recent work has shown that SAA proteins can enter the brain by crossing the intact blood-brain barrier (BBB), and that they can impair BBB functions. Once in the central nervous system (CNS), SAA proteins can have both protective and harmful effects, which have important implications for CNS disease.

View Article and Find Full Text PDF

There is a paucity of information regarding efficacious pharmacological neuroprotective strategies to attenuate or reduce brain injury in neonates. Lipopolysaccharide (LPS) disrupts blood-brain barrier (BBB) function in adult rodents and increases inflammation in adults and neonates. Human blood-derived Inter-alpha Inhibitor Proteins (IAIPs) are neuroprotective, improve neonatal survival after LPS, and attenuate LPS-induced disruption of the BBB in adult male mice.

View Article and Find Full Text PDF

High-mobility group box 1 (HMGB1) is a ubiquitous protein that regulates transcription in the nucleus, and is an endogenous damage-associated molecular pattern molecule that activates the innate immune system. HMGB1 activates the TLR4 and RAGE recepto, inducing downstream signals reminiscent of cytokines that have been found to cross the blood-brain barrier (BBB). Blood HMGB1 increases in stroke, sepsis, senescence, alcohol binge drinking and other conditions.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease.

View Article and Find Full Text PDF

COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is an interface primarily comprised of brain endothelial cells (BECs), separating the central nervous system (CNS) from the systemic circulation while carefully regulating the transport of molecules and inflammatory cells, and maintaining the required steady-state environment. Inflammation modulates many BBB functions, but the ultrastructural cytoarchitectural changes of the BBB with inflammation are understudied. Inflammation was induced in male 8-10-week-old CD-1 mice with intraperitoneal lipopolysaccharide (LPS), using a regimen (3 mg/kg at 0, 6, and 24 h) that caused robust BBB disruption but had minimal lethality at the study timepoint of 28 h.

View Article and Find Full Text PDF

Ozone (O) is an air pollutant that primarily damages the lungs, but growing evidence supports the idea that O also harms the brain; acute exposure to O has been linked to central nervous system (CNS) symptoms such as depressed mood and sickness behaviors. However, the mechanisms by which O inhalation causes neurobehavioral changes are limited. One hypothesis is that factors in the circulation bridge communication between the lungs and brain following O exposure.

View Article and Find Full Text PDF

Brain endothelial cells (BEC) of the vascular blood-brain barrier (BBB) interact with many different cell types in the brain, including microglia, the brain's resident immune cells. Physical associations of microglia with the BBB and the importance of these interactions in health and disease are an emerging area of study and likely involved in neuroimmune communication. In this mini-review, we consider how microglia and the BBB are intrinsically linked in the developing brain, discuss possible mechanisms that attract microglia to the vasculature in healthy physiological conditions, and examine the known microglial-vascular associated changes in systemic infection and various disease states.

View Article and Find Full Text PDF

One important function of the vascular blood-brain barrier (BBB) is to facilitate neuroimmune communication. The BBB fulfills this function, in part, through its ability to transport cytokines and chemokines. C-C motif chemokine receptor 2 (CCL2) (MCP-1) and C-C motif chemokine receptor 5 (CCL5) (RANTES) are proinflammatory chemokines that mediate neuroimmune responses to acute insults and aspects of brain injury and neurodegenerative diseases; however, a blood-to-brain transport system has not been evaluated for either chemokine in vivo.

View Article and Find Full Text PDF

Ozone is a widespread air toxicant. Although its primary target organ is the lungs, emerging evidence suggests that ozone also has harmful effects on the brain. The vascular blood-brain barrier (BBB), an endothelial interface that regulates passage of substances between the brain and peripheral tissues, is a likely mediator of ozone's adverse effects on the brain.

View Article and Find Full Text PDF

Disruption of the blood-brain barrier (BBB) can occur through different mechanisms and pathways. As these pathways result in increased permeability to different classes of substances, it is likely that the neurological insults that occur will also differ for these pathways. The major categories of BBB disruption are paracellular (between cells) and transcellular (across cells) with a subcategory of transcellular leakage involving vesicles (transcytotic).

View Article and Find Full Text PDF

Systemic inflammation has been implicated in the progression of Alzheimer's disease (AD); however, less is understood about how existing AD pathology contributes to adverse outcomes following acute inflammatory insults. In the present study, our goal was to determine how AD-associated amyloid beta (Aβ) pathology influences the acute neuroinflammatory and behavioral responses to a moderate systemic inflammatory insult. We treated 16-18-month-old female Tg2576 (Tg) mice, which overproduce human Aβ and develop plaques, and age-matched wild-type (WT) littermate mice with an intraperitoneal injection of 0.

View Article and Find Full Text PDF

Purpose: Anesthetics are required for procedures that deliver drugs/biologics, infectious/inflammatory agents, and toxicants directly to the lungs. However, the possible confounding effects of anesthesia on lung inflammation and injury are underreported. Here, we evaluated the effects of two commonly used anesthetic regimens on lung inflammatory responses to ozone in mice.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a multifactorial process that takes years to manifest clinically. We propose that brain-derived indicators of cerebrovascular dysfunction and inflammation would inform on AD-related pathological processes early in, and perhaps prior to neurodegenerative disease development.

Objective: Define the relationship between cerebrospinal fluid (CSF) markers of cerebrovascular dysfunction and neuroinflammation with AD CSF biomarkers in cognitively normal individuals.

View Article and Find Full Text PDF

Background: Human induced pluripotent stem cell (hiPSC)-derived brain endothelial-like cells (iBECs) are a robust, scalable, and translatable model of the human blood-brain barrier (BBB). Prior works have shown that high transendothelial electrical resistance (TEER) persists in iBECs for at least 2 weeks, emphasizing the utility of the model for longer term studies. However, most studies evaluate iBECs within the first few days of subculture, and little is known about their proliferative state, which could influence their functions.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) describes the brain's highly specialized capillaries, which form a dynamic interface that maintains central nervous system (CNS) homeostasis. The BBB supports the CNS, in part, by preventing the entry of potentially harmful circulating molecules into the brain. However, this specialized function is challenging for the development of CNS therapeutics.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) protects the central nervous system (CNS) from unregulated exposure to the blood and its contents. The BBB also controls the blood-to-brain and brain-to-blood permeation of many substances, resulting in nourishment of the CNS, its homeostatic regulation and communication between the CNS and peripheral tissues. The cells forming the BBB communicate with cells of the brain and in the periphery.

View Article and Find Full Text PDF

Statins have neuroprotective effects on neurological diseases, including a pleiotropic effect possibly related to blood-brain barrier (BBB) function. In this study, we investigated the effects of pitavastatin (PTV) on lipopolysaccharide (LPS)-induced BBB dysfunction in an in vitro BBB model comprising cocultured primary mouse brain endothelial cells, pericytes, and astrocytes. LPS (1 ng/mL, 24 h) increased the permeability and lowered the transendothelial electrical resistance of the BBB, and the co-administration of PTV prevented these effects.

View Article and Find Full Text PDF

Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates whether the coronavirus (SARS-CoV-2) can enter the brain, finding that a component of the virus (the S1 subunit of the spike protein) can cross the blood-brain barrier in mice when injected intravenously.
  • - Intranasal administration of the S1 subunit also allows it to enter the brain, but at much lower levels compared to intravenous injection; various factors like APOE genotype and sex influenced uptake in specific brain and organ regions.
  • - The research reveals that the S1 subunit crosses the blood-brain barrier through a process called adsorptive transcytosis and involves a specific enzyme (angiotensin-converting enzyme 2) for uptake in the
View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a vital interface that supports normal brain functions. Endothelial cells (ECs) are the main component of the BBB and are highly specialized to govern the transfer of substances into brain. The EC lumen is enmeshed with an extracellular matrix (ECM), known as the endothelial glycocalyx layer (EGL).

View Article and Find Full Text PDF