Publications by authors named "Michelle Epstein"

Genetically modified strain MXY0541 was developed to produce soy leghemoglobin by introducing the coding sequence encoding leghemoglobin from soybean (). The molecular characterisation data and bioinformatic analyses do not raise any safety concerns. The safety of soy leghemoglobin as a food additive has already been assessed by the EFSA FAF Panel (EFSA-Q-2022-00031).

View Article and Find Full Text PDF

Genetically modified maize DP51291 was developed to confer control against susceptible corn rootworm pests and tolerance to glufosinate-containing herbicide; these properties were achieved by introducing the and expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP51291 and its conventional counterpart needs further assessment, except for phosphorus in forage and manganese, proline, oleic acid (C18:1) and linoleic acid (C18:2) in grain, which do not raise safety and nutritional concerns.

View Article and Find Full Text PDF
Article Synopsis
  • The European GMO Panel reviewed new information regarding a genetically modified soybean application (MON × MON 87708 × MON 89788) after a request from the European Commission.
  • A 90-day feeding study demonstrated that diets containing the GM soybean did not show any adverse effects in rats, meeting regulatory requirements.
  • The panel concluded that the GM soybean is as safe as its non-GM counterparts and does not present nutritional concerns for humans or animals based on the findings from both earlier assessments and the recent study.
View Article and Find Full Text PDF

Genetically modified (GM) maize DP910521 was developed to confer resistance against certain lepidopteran insect pests as well as tolerance to glufosinate herbicide; these properties were achieved by introducing the expression cassettes. The molecular characterisation data and bioinformatic analyses did not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP910521 and its conventional counterpart needs further assessment except for the levels of iron in grain, which do not raise safety and nutritional concerns.

View Article and Find Full Text PDF

Genetically modified maize MON 95275 was developed to confer protection to certain coleopteran species. These properties were achieved by introducing the , and expression cassettes. The molecular characterisation data and bioinformatic analyses reveal similarity to known toxins, which was further assessed.

View Article and Find Full Text PDF
Article Synopsis
  • - EFSA was asked by the European Commission to evaluate the safety and regulation of new biotech developments (NGTs) applied to microorganisms for environmental release and food/feed use.
  • - A study found that NGT-modified microorganisms are not expected to pose new risks compared to those modified through older genetic methods, suggesting NGTs might lead to fewer hazards overall.
  • - EFSA's existing guidelines are deemed "partially applicable," meaning some aspects can be simplified for NGTs, but updates are needed for better risk assessment across all genetic modification methods.
View Article and Find Full Text PDF

EFSA was asked by the European Parliament to provide a scientific opinion on the analysis by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) of Annex I of the European Commission proposal for a regulation 'on plants obtained by certain new genomic techniques (NGTs) and their food and feed, and amending regulation (EU) 2017/625'. The Panel on genetically modified organisms (GMO) assessed the opinion published by ANSES, which focuses on (i) the need to clarify the definitions and scope, (ii) the scientific basis for the equivalence criteria and (iii) the need to take potential risks from category 1 NGT plants into account. The EFSA GMO Panel considered the ANSES analysis and comments on various terms used in the criteria in Annex I of the European Commission proposal and discussed definitions based on previous EFSA GMO Panel opinions.

View Article and Find Full Text PDF

Following the joint submission of dossier GMFF-2022-9170 under Regulation (EC) No 1829/2003 from Bayer Agriculture B.V. and Corteva Agriscience Belgium B.

View Article and Find Full Text PDF

Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns.

View Article and Find Full Text PDF

Following the submission of dossier GMFF-2022-3670 under Regulation (EC) No 1829/2003 from Corteva Agriscience Belgium BV and Bayer Agriculture BV, the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant and insect-resistant genetically modified maize MON 89034 × 1507 × NK603, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and a search for additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF

Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the and expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment.

View Article and Find Full Text PDF

Background: IgE-mediated food allergy (FA) is a global health concern with substantial individual and societal implications. While diverse intervention strategies have been researched, inconsistencies in reported outcomes limit evaluations of FA treatments. To streamline evaluations and promote consistent reporting, the Core Outcome Measures for Food Allergy (COMFA) initiative aimed to establish a Core Outcome Set (COS) for FA clinical trials and observational studies of interventions.

View Article and Find Full Text PDF
Article Synopsis
  • Bayer Agriculture BV submitted a dossier for the renewal of authorization for genetically modified maize MON 810 to the European Food Safety Authority (EFSA), focusing on its safety for food and feed uses but not cultivation in the EU.
  • The EFSA's GMO Panel evaluated new data, including environmental monitoring reports and updated studies, to identify any potential new hazards or uncertainties related to the maize.
  • The Panel concluded that there is no evidence of new risks or changes since the original assessment, indicating that the genetically modified maize remains safe based on the identical DNA sequence.
View Article and Find Full Text PDF
Article Synopsis
  • - Genetically modified maize DP23211 was engineered to resist specific pests and tolerate a certain herbicide, with no critical safety issues found in molecular and bioinformatic analyses.
  • - Differences in nutrient levels were noted but did not pose safety or nutritional concerns, and the GMO Panel deemed the new proteins and RNA from the modification to be safe for consumption.
  • - Overall, maize DP23211 is considered just as safe for human and animal health as conventional maize, and no additional monitoring for safety or environmental impact is required.
View Article and Find Full Text PDF

Genetically modified maize DP915635 was developed to confer tolerance to glufosinate herbicide and resistance to corn rootworm pests. These properties were achieved by introducing the and expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment.

View Article and Find Full Text PDF

Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns.

View Article and Find Full Text PDF

Genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 was developed by crossing to combine six single events: Bt11, MIR162, MIR604, MON 89034, 5307 and GA21, the GMO Panel previously assessed the 6 single maize events and 27 out of the 56 possible subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the six-event stack maize does not give rise to food and feed safety and nutritional concerns.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-024 under Regulation (EC) No 1829/2003 from BASF Agricultural Solutions Seed US LLC, the Panel on Genetically Modified Organisms of EFSA was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant genetically modified oilseed rape MS8, RF3 and MS8 × RF3, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF

The European Commission requested the Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA GMO Panel) to assess new scientific information on maize MIR162, and to indicate whether the previous conclusions on the safety of maize MIR162 as a single event and as a part of stacked events remain valid. The new information is included in a European patent that reports a decrease in male fertility in some MIR162 inbred lines, pointing to a potential link between such decrease and the Vip3 protein expressed by maize MIR162. The EFSA GMO Panel evaluated the data provided by the patent owner and found scarce support for a causal link between Vip3 and decreased fertility.

View Article and Find Full Text PDF

In the last decades there has been a parallel increase in the incidence of food allergies and the development of experimental mouse models. These models have improved our understanding of the disease but do have limitations. For instance, they do not entirely reproduce human pathophysiology; moreover, validated and predictive models are absent.

View Article and Find Full Text PDF

Genetically modified maize GA21 × T25 was developed by crossing to combine two single events: GA21 and T25. The GMO Panel previously assessed the two single maize events and did not identify safety concerns. No new data on the single maize events were identified that could lead to modification of the original conclusions on their safety.

View Article and Find Full Text PDF

Genetically modified maize MON 87419 was developed to confer tolerance to dicamba- and glufosinate-based herbicides. These properties were achieved by introducing the and expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment.

View Article and Find Full Text PDF

EFSA carries out the risk assessment of genetically modified plants for food and feed uses under Regulation (EU) No 503/2013. Exposure assessment - anticipated intake/extend of use shall be an essential element of the risk assessment of genetically modified feeds, as required by Regulation (EU) No 503/2013. Estimates of animal dietary exposure to newly expressed proteins should be determined to cover average consumption across all the different species, age, physiological and productive phases of farmed and companion animals, and identify and consider particular consumer groups with expected higher exposure.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are covalent changes occurring on amino acid side chains of proteins and yet are neglected structural and functional aspects of protein architecture. The objective was to detect differences in PTM profiles that take place after roasting using open PTM search. We conducted a bottom-up proteomic study to investigate the impact of peanut roasting on readily soluble allergens and their PTM profiles.

View Article and Find Full Text PDF

Following the submission of application EFSA-GMO-RX-021 under Regulation (EC) No 1829/2003 from Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant genetically modified soybean MON 87701, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.

View Article and Find Full Text PDF