Publications by authors named "Michelle Ehrlich"

Introduction: While there may be microbial contributions to Alzheimer's disease (AD), findings have been inconclusive. We recently reported an AD-associated CD83(+) microglia subtype associated with increased immunoglobulin G4 (IgG4) in the transverse colon (TC).

Methods: We used immunohistochemistry (IHC), IgG4 repertoire profiling, and brain organoid experiments to explore this association.

View Article and Find Full Text PDF

Background: Insulin-like growth factor-1 (IGF-1) promotes neurogenesis, cell survival, and glial function, making it a promising candidate therapy in Alzheimer's disease (AD).

Objective: Long arginine 3-IGF-1 (LR3-IGF-1) is a potent IGF-1 analogue. We sought to determine whether intranasal (IN) LR3 treatment would delay cognitive decline and pathology in 5XFAD mice.

View Article and Find Full Text PDF

Background: Modulation of physical activity represents an important intervention that may delay, slow, or prevent mild cognitive impairment (MCI) or dementia due to Alzheimer's disease (AD). One mechanism proposed to underlie the beneficial effect of physical exercise (PE) involves the apparent stimulation of adult hippocampal neurogenesis (AHN). BCI-838 is a pro-drug whose active metabolite BCI-632 is a negative allosteric modulator at group II metabotropic glutamate receptors (mGluR2/3).

View Article and Find Full Text PDF
Article Synopsis
  • - Dual specificity protein phosphatase 6 (DUSP6) is important in regulating late-onset Alzheimer's disease (AD), with lower DUSP6 levels linked to worse dementia ratings in humans and decreased levels observed in a mouse model of the disease.
  • - Researchers injected AAV5-DUSP6 into the brains of 5xFAD mice to increase DUSP6 expression and found that it improved memory deficits and reduced amyloid plaques in male mice but not in female mice, while also decreasing microglial activation in both sexes.
  • - Although DUSP6 overexpression helped reduce neuroinflammation and activated microglia in both male and female mice, the improvement in memory was sex-dependent, indicating different underlying mechanisms
View Article and Find Full Text PDF

Introduction: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration.

View Article and Find Full Text PDF

DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized the stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with the label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified protein expression and phosphorylation patterns modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome.

View Article and Find Full Text PDF
Article Synopsis
  • Spatially resolved transcriptomics (SRT) allows researchers to analyze the spatial organization of cells and their gene expression patterns in their natural context.
  • A new statistical framework called QuadST has been developed to effectively identify interaction-changed genes (ICGs) based on the distance between specific cell type pairs in SRT data, using a quantile regression model.
  • QuadST outperforms existing methods by providing strong control over false discovery rates (FDR) while identifying ICGs relevant to important biological interactions, such as synaptic pathways in mouse brain cell interactions.
View Article and Find Full Text PDF

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP.

View Article and Find Full Text PDF

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome.

View Article and Find Full Text PDF

Studies of microglial gene manipulation in mouse models of Alzheimer's disease (AD) amyloidopathy can cause unpredictable effects on various key endpoints, including amyloidosis, inflammation, neuritic dystrophy, neurodegeneration, and learning behavior. In this Correspondence, we discuss three examples, microRNA 155 (miR155), TREM2, and INPP5D, in which observed results have been difficult to reconcile with predicted results based on precedent, because these six key endpoints do not reliably track together. The pathogenesis of AD involves multiple cell types and complex events that may change with disease stage.

View Article and Find Full Text PDF

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5×FAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5×FAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5×FAD proteome/phosphoproteome.

View Article and Find Full Text PDF

Background: Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model.

Methods: AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP.

View Article and Find Full Text PDF

Introduction: Infants exposed to opioids are at high risk of exhibiting Neonatal Opioid Withdrawal Syndrome (NOWS), a combination of somatic withdrawal symptoms including high pitched crying, sleeplessness, irritability, gastrointestinal distress, and in the worst cases, seizures. The heterogeneity of opioid exposure, particularly exposure to polypharmacy, makes it difficult to investigate the underlying molecular mechanisms that could inform early diagnosis and treatment of NOWS, and challenging to investigate consequences later in life.

Methods: To address these issues, we developed a mouse model of NOWS that includes gestational and post-natal morphine exposure that encompasses the developmental equivalent of all three human trimesters and assessed both behavior and transcriptome alterations.

View Article and Find Full Text PDF

The impact of tau pathology on sleep microarchitecture features, including slow oscillations, spindles, and their coupling, has been understudied, despite the proposed importance of these electrophysiological features toward learning and memory. Dual orexin receptor antagonists (DORAs) are known to promote sleep, but whether and how they affect sleep microarchitecture in the setting of tauopathy is unknown. In the PS19 mouse model of tauopathy MAPT (microtubule-associated protein tau) P301S (both male and female), young PS19 mice 2-3 months old show a sleep electrophysiology signature with markedly reduced spindle duration and power and elevated slow oscillation (SO) density compared with littermate controls, although there is no significant tau hyperphosphorylation, tangle formation, or neurodegeneration at this age.

View Article and Find Full Text PDF

Tauopathies are a heterogeneous group of neurodegenerative disorders that are clinically and pathologically distinct from Alzheimer's disease (AD) having tau inclusions in neurons and/or glia as their most prominent neuropathological feature. BCI-838 (MGS00210) is a group II metabotropic glutamate receptor (mGluR2/3) antagonist pro-drug. Previously, we reported that orally administered BCI-838 improved learning behavior and reduced anxiety in Dutch (APP) transgenic mice, a model of the pathological accumulation of Aβ oligomers found in AD.

View Article and Find Full Text PDF

Key targets of both the therapeutic and abused properties of opioids are μ-opioid receptors (MORs). Despite years of research investigating the biochemistry and signal transduction pathways associated with MOR activation, we do not fully understand the cellular mechanisms underlying opioid addiction. Given that addictive opioids such as morphine, oxycodone, heroin, and fentanyl all activate MORs, and current therapies such as naloxone and buprenorphine block this activation, the availability of tools to mechanistically investigate opioid-mediated cellular and behavioral phenotypes are necessary.

View Article and Find Full Text PDF

Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on (non-acronymic) as a key hub or driver. Within this computational network, we identified the dual-specificity protein phosphatase 4 () [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, gene expression, like that of , is downregulated in postmortem Alzheimer's disease (AD) brains.

View Article and Find Full Text PDF

Introduction: The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD).

Methods: To assess the consequences of inducible Inpp5d knockdown in microglia of APP /PSEN1 (PSAPP) mice, we injected 3-month-old Inpp5d /Cx3cr1 and PSAPP/Inpp5d /Cx3cr1 mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination.

View Article and Find Full Text PDF

The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs).

View Article and Find Full Text PDF

The dysregulation of striatal gene expression and function is linked to multiple diseases, including Huntington's disease (HD), Parkinson's disease, X-linked dystonia-parkinsonism (XDP), addiction, autism, and schizophrenia. Striatal medium spiny neurons (MSNs) make up 90% of the neurons in the striatum and are critical to motor control. The transcription factor, (also known as ), is required for striatal development, but the function of in adult MSNs in vivo has not been investigated.

View Article and Find Full Text PDF

TYROBP (also known as DAP12 or KARAP) is a transmembrane adaptor protein initially described as a receptor-activating subunit component of natural killer (NK) cells. TYROBP is expressed in numerous cell types, including peripheral blood monocytes, macrophages, dendritic cells, and osteoclasts, but a key point of recent interest is related to the critical role played by TYROBP in the function of many receptors expressed on the plasma membrane of microglia. TYROBP is the downstream adaptor and putative signaling partner for several receptors implicated in Alzheimer's disease (AD), including SIRP1β, CD33, CR3, and TREM2.

View Article and Find Full Text PDF

Aging is a major risk factor for late-onset Alzheimer's disease (LOAD). How aging contributes to the development of LOAD remains elusive. In this study, we examined multiple large-scale transcriptomic datasets from both normal aging and LOAD brains to understand the molecular interconnection between aging and LOAD.

View Article and Find Full Text PDF

Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations.

View Article and Find Full Text PDF