Publications by authors named "Michelle E Wall"

Signaling in tenocytes during development, homeostasis and injury involves multiple and redundant pathways. Given that tendons transmit mechanical forces from muscle to bone to effect movement, a key function for tenocytes is the detection of and response to mechanical stimulation. Mechanotransduction involves matrix-integrin-cytoskeleton to nucleus signaling, gap junction intercellular communication, changes in intracellular calcium (Ca(2+)), activation of receptors and their pathways, and responses to biochemical factors such as hormones, growth factors, adenosine triphosphate (ATP) and its derivatives, and neuromodulators.

View Article and Find Full Text PDF

Tendons mainly function as load-bearing tissues in the muscloskeletal system; transmitting loads from muscle to bone. Tendons are dynamic structures that respond to the magnitude, direction, frequency, and duration of physiologic as well as pathologic mechanical loads via complex interactions between cellular pathways and the highly specialized extracellular matrix. This paper reviews the evolution and current knowledge of mechanobiology in tendon development, homeostasis, disease, and repair.

View Article and Find Full Text PDF

We have shown that the uniaxial cyclic tensile strain of magnitude 10% promotes and enhances osteogenesis of human mesenchymal stem cells (hMSC) and human adipose-derived stem cells (hASC) from normal, nonosteoporotic donors. In the present study, MSC from osteoporotic donors were analyzed for changes in mRNA expression in response to 10% uniaxial tensile strain to identify potential mechanisms underlying the use of this mechanical loading paradigm for prevention and treatment of osteoporosis. Human MSC isolated from three female, postmenopausal osteoporotic donors were analyzed for their responses to mechanical loading using microarray analysis of over 47,000 gene probes.

View Article and Find Full Text PDF

Human adipose-derived stem cells (hASC) have shown great potential for bone tissue engineering. However, the molecular mechanisms underlying this potential are not yet known, in particular the separate and combined effects of three-dimensional (3D) culture and mechanical loading on hASC osteogenesis. Mechanical stimuli play a pivotal role in bone formation, remodeling, and fracture repair.

View Article and Find Full Text PDF

Plasma treatment of substrate surfaces can be utilized to improve adhesion of cells to tissue-engineered scaffolds. The purpose of this study was to enhance cell adhesion to non-woven poly(L-lactic acid) (PLLA) scaffolds using oxygen plasma treatment to increase surface hydroxyl groups and thereby enhance substrate hydrophilicity. It was hypothesized that oxygen plasma treatment would increase the number of adipose-derived human mesenchymal stem cells (hMSCs) that adhered to melt-blown, non-woven PLLA scaffolds without affecting cell viability.

View Article and Find Full Text PDF

Cell morphology may be an important stimulus during differentiation of human adipose-derived adult stem (hADAS) cells, but there are limited studies that have investigated the role of the cytoskeleton or associated proteins in hADAS cells undergoing differentiation. Palladin is an actin-associated protein that plays an integral role in focal adhesion and cytoskeleton organization. In this study we show that palladin was expressed by hADAS cells and was modulated during osteogenic differentiation and in response to cyclic tensile strain.

View Article and Find Full Text PDF

Adipose-derived human mesenchymal stem cells (hMSCs) will be more valuable for tissue engineering applications if they can be extensively subcultured without loss of phenotype and multilineage differentiation ability. This study examined the effects of serial passaging on growth rate, gene expression, and differentiation potential of adipose-derived hMSCs. Differentiation was assessed by analyzing changes in messenger RNA (mRNA) expression of osteogenic and adipogenic marker genes and by determining production of calcium deposits and lipid vacuoles.

View Article and Find Full Text PDF

Varieties of cell-matrix or cell-cell adhesions are associated with the actin cytoskeleton. However, for gap junctions, which are both channels and adhesions, there has been little evidence for such an association. The purpose of this study was to determine if connexin 43 (Cx43) associates with actin and to determine if this association is altered under mechanical load in tenocytes, a mechanically sensitive cell.

View Article and Find Full Text PDF

Strain magnitudes within tenocytes undergoing substrate tensile strain are not well defined. It was hypothesized that strain magnitudes at the cellular level would reflect those of the applied substrate (equibiaxial or uniaxial) strain. A vacuum-operated device was used to apply equibiaxial or uniaxial tension to a flexible substrate upon which tenocytes were cultured in monolayer.

View Article and Find Full Text PDF

An in vitro model was used to investigate the effect of mechanical stimuli on adaptation to load and calcium signaling in aligned medial collateral ligament cells (MCL). This model used a patterned silicone membrane to align the cells parallel with the direction of the microgrooves. Alignment created an architecture that simulated a degree of cell orientation in native ligament tissue.

View Article and Find Full Text PDF

Sympathetic efferent nerves are present in tendons, but their function within tendon is unknown. alpha(1)-Adrenoceptors are expressed by a variety of cell types. In the presence of norepinephrine (NE), adrenoceptors activate G(q/11) signaling pathways that subsequently increase intracellular Ca(2+) concentration ([Ca(2+)](ic)).

View Article and Find Full Text PDF