Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, TccC3, and 's own SpvB.
View Article and Find Full Text PDFCompetition between bacterial species is a major factor shaping microbial communities. In this work, we explored the hypothesis that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by any of the four tested actin-specific toxins: MARTX actin crosslinking and Rho GTPase inactivation domains (ACD and RID, respectively), TccC3 from , and own SpvB.
View Article and Find Full Text PDFBackground: The distribution of Clostridioides difficile strains and transmission dynamics in the United States are not well defined. Whole-genome sequencing across 2 Centers for Disease Control and Prevention Emerging Infections Program C. difficile infection (CDI) surveillance regions (Minnesota and New York) was performed to identify predominant multilocus sequence types (MLSTs) in community-associated (CA) and healthcare-associated (HCA) disease and assess transmission.
View Article and Find Full Text PDFMicrobiology (Reading)
February 2021
In order to cause disease, pathogenic strains of rely on intricate regulatory networks to orchestrate the transition between their native aquatic environment and the human host. For example, bacteria in a nutrient-starved environment undergo a metabolic shift called the stringent response, which is mediated by the alarmone ppGpp and an RNA-polymerase binding transcriptional factor, DksA. In O1 serogroup strains of which use the toxin co-regulated pilus (TCP) and cholera toxin (CT) as primary virulence factors, DksA was reported to have additional functions as a mediator of virulence gene expression.
View Article and Find Full Text PDFMounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities.
View Article and Find Full Text PDFAM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death.
View Article and Find Full Text PDFUnlabelled: Genes carried on the type 3 secretion system (T3SS) pathogenicity island of Vibrio cholerae non-O1/non-O139 serogroup strain AM-19226 must be precisely regulated in order for bacteria to cause disease. Previously reported results showed that both T3SS function and the presence of bile are required to cause Caco2-BBE cell cytotoxicity during coculture with strain AM-19226. We therefore investigated additional parameters affecting in vitro cell death, including bacterial load and the role of three transmembrane transcriptional regulatory proteins, VttRA, VttRB, and ToxR.
View Article and Find Full Text PDFMost pathogenic, non-O1/non-O139 serogroup Vibrio cholerae strains cause diarrheal disease in the absence of cholera toxin. Instead, many use Type 3 Secretion System (T3SS) mediated mechanisms to disrupt host cell homeostasis. We identified a T3SS effector protein, VopX, which is translocated into mammalian cells during in vitro co-culture.
View Article and Find Full Text PDFVibrio cholerae is a genetically diverse species, and pathogenic strains can encode different virulence factors that mediate colonization and secretory diarrhea. Although the toxin co-regulated pilus (TCP) is the primary colonization factor in epidemic causing V. cholerae strains, other strains do not encode TCP and instead promote colonization via the activity of a type three secretion system (T3SS).
View Article and Find Full Text PDFA subset of non-O1/non-O139 serogroup strains of Vibrio cholerae cause disease using type 3 secretion system (T3SS)-mediated mechanisms. An ∼50-kb genomic island carries genes encoding the T3SS structural apparatus, effector proteins, and two transmembrane transcriptional regulators, VttR(A) and VttR(B), which are ToxR homologues. Previous experiments demonstrated that VttR(A) and VttR(B) are necessary for colonization in vivo and promote bile-dependent T3SS gene expression in vitro.
View Article and Find Full Text PDFNumerous virulence factors have been associated with pathogenic non-O1/non-O139 serogroup strains of Vibrio cholerae. Among them are the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH), which share amino acid similarities to the TDH and TRH proteins of Vibrio parahaemolyticus, where they have been shown to contribute to pathogenesis. Although TDH and TRH homologs can be encoded on extrachromosomal elements in V.
View Article and Find Full Text PDFJ Immunol Methods
October 2011
Epitopes are a hallmark of the antigen specific immune response. The identification and characterization of epitopes is essential for modern immunologic studies, from investigating cellular responses against tumors to understanding host/pathogen interactions especially in the case of bacteria with intracellular residence. Here, we have utilized a novel approach to identify T cell epitopes exploiting the exquisite ability of particulate antigens, in the form of beads, to deliver exogenous antigen to both MHC class I and class II pathways for presentation to T cell hybridomas.
View Article and Find Full Text PDFAM-19226 is a pathogenic O39 serogroup Vibrio cholerae strain that lacks the typical virulence factors for colonization (toxin-coregulated pilus [TCP]) and toxin production (cholera toxin [CT]) and instead encodes a type III secretion system (T3SS). The mechanism of pathogenesis is unknown, and few effector proteins have been identified. We therefore undertook a survey of the open reading frames (ORFs) within the ∼49.
View Article and Find Full Text PDFStrain AM-19226 is a pathogenic non-O1/non-O139 serogroup Vibrio cholerae strain that does not encode the toxin-coregulated pilus or cholera toxin but instead causes disease using a type three secretion system (T3SS). Two genes within the T3SS pathogenicity island, herein named vttR(A) (locus tag A33_1664) and vttR(B) (locus tag A33_1675), are predicted to encode proteins that show similarity to the transcriptional regulator ToxR, which is found in all strains of V. cholerae.
View Article and Find Full Text PDFWe have previously characterized a non-O1, non-O139 Vibrio cholerae strain, AM-19226, that lacks the known virulence factors but contains components of a type III secretion system (T3SS). In this study, we demonstrated that the T3SS is functional and is required for intestinal colonization in the infant mouse model. We also identified VopF, which is conserved among T3SS-positive V.
View Article and Find Full Text PDFCholera outbreaks in subSaharan African countries are caused by strains of the El Tor biotype of toxigenic Vibrio cholerae O1. The El Tor biotype is the causative agent of the current seventh cholera pandemic, whereas the classical biotype, which was associated with the sixth pandemic, is now extinct. Besides other genetic differences the CTX prophages encoding cholera toxin in the two biotypes of V.
View Article and Find Full Text PDFUnderstanding gene expression by bacteria during the actual course of human infection may provide important insights into microbial pathogenesis. In this study, we evaluated the transcriptional profile of Vibrio cholerae, the causative agent of cholera, in clinical specimens from cholera patients. We collected samples of human stool and vomitus that were positive by dark-field microscopy for abundant vibrios and used a microarray to compare gene expression in organisms recovered directly from specimens collected during the early and late stages of human infection.
View Article and Find Full Text PDFNon-O1, non-O139 Vibrio cholerae can cause gastroenteritis and extraintestinal infections, but, unlike O1 and O139 strains of V. cholerae, little is known about the virulence gene content of non-O1, non-O139 strains and their phylogenetic relationship to other pathogenic V. cholerae.
View Article and Find Full Text PDFTo understand the evolutionary events and possible selection mechanisms involved in the emergence of pathogenic Vibrio cholerae, we analyzed diverse strains of V. cholerae isolated from environmental waters in Bangladesh by direct enrichment in the intestines of adult rabbits and by conventional laboratory culture. Strains isolated by conventional culture were mostly (99.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2003
Toxigenic Vibrio cholerae cause cholera, a severe diarrheal disease responsible for significant morbidity and mortality worldwide. Two determinants, cholera enterotoxin (CT) and toxin coregulated pilus (TCP) are critical factors responsible for this organism's virulence. The genes for these virulence determinants belong to a network of genes (the ToxR regulon) whose expression is modulated by transcriptional regulators encoded by the toxRS, tcpPH, and toxT genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2003
Vibrio cholerae is the etiologic bacterial agent of cholera, a severe diarrheal disease endemic in much of the developing world. The V. cholerae genome contains 3,890 genes distributed between a large and a small chromosome.
View Article and Find Full Text PDFIFN-gamma-inducible protein 10 (IP-10, CXCL10), a chemokine secreted from cells stimulated with type I and II IFNs and LPS, is a chemoattractant for activated T cells. Expression of IP-10 is seen in many Th1-type inflammatory diseases, where it is thought to play an important role in recruiting activated T cells into sites of tissue inflammation. To determine the in vivo function of IP-10, we constructed an IP-10-deficient mouse (IP-10(-/-)) by targeted gene disruption.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2002
The production of virulence factors including cholera toxin and the toxin-coregulated pilus in the human pathogen Vibrio cholerae is strongly influenced by environmental conditions. The well-characterized ToxR signal transduction cascade is responsible for sensing and integrating the environmental information and controlling the virulence regulon. We show here that, in addition to the known components of the ToxR signaling circuit, quorum-sensing regulators are involved in regulation of V.
View Article and Find Full Text PDFHistorically, the first six recorded cholera pandemics occurred between 1817 and 1923 and were caused by Vibrio cholerae O1 serogroup strains of the classical biotype. Although strains of the El Tor biotype caused sporadic infections and cholera epidemics as early as 1910, it was not until 1961 that this biotype emerged to cause the 7th pandemic, eventually resulting in the global elimination of classical biotype strains as a cause of disease. The completed genome sequence of 7th pandemic El Tor O1 strain N16961 has provided an important tool to begin addressing questions about the evolution of V.
View Article and Find Full Text PDF