We have investigated the chemoattractant properties of self-antigens associated with autoimmune diseases and solid tumors. Many autoantigens induced leukocyte migration, especially by immature dendritic cells (iDC) by interacting with various chemoattractant Gi-protein-coupled receptors (GiPCR). Our initial observation that myositis-associated autoantigens, histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, were chemotactic for CC chemokine receptor 5 (CCR5)- and CCR3-expressing leukocytes, while other nonautoantigenic aminoacyl-tRNA synthesases were not, suggested that only self-antigens capable of interacting with receptors on antigen-presenting cells were immunogenic.
View Article and Find Full Text PDFThe cells of both the adaptive and innate immune systems express a dizzying array of receptors that transduce and integrate an enormous amount of information about the environment that allows the cells to mount effective immune responses. Over the past several years, significant advances have been made in elucidating the molecular details of signal cascades initiated by the engagement of immune cell receptors by their ligands. Recent evidence indicates that immune receptors and components of their signaling cascades are spatially organized and that this spatial organization plays a central role in the initiation and regulation of signaling.
View Article and Find Full Text PDFA major function of the B cell is the internalization of antigen through the BCR for processing and presentation to T cells. While there is evidence suggesting that lipid raft signaling may regulate internalization, the molecular machinery coordinating these two processes remains to be defined. Here we present a link between the B cell signaling and internalization machinery and show that Src-family kinase activity is required for inducible clathrin heavy chain phosphorylation, BCR colocalization with clathrin, and regulated internalization.
View Article and Find Full Text PDF