Systematic evolution of ligands by exponential enrichment (SELEX) encompasses a wide variety of high-throughput screening techniques for producing nucleic acid binders to molecular targets through directed evolution. We describe here the design and selection steps for discovery of DNA aptamers with specificity for the two consecutive N-terminal amino acids (AAs) of a small peptide (8-10 amino acids). This bead-based method may be adapted for applications requiring binders which recognize a specific portion of the desired target.
View Article and Find Full Text PDFMicroscopic examination of blood smears remains the gold standard for laboratory inspection and diagnosis of malaria. Smear inspection is, however, time-consuming and dependent on trained microscopists with results varying in accuracy. We sought to develop an automated image analysis method to improve accuracy and standardization of smear inspection that retains capacity for expert confirmation and image archiving.
View Article and Find Full Text PDFWe demonstrate early progress toward constructing a high-throughput, single-molecule protein sequencing technology utilizing barcoded DNA aptamers (binders) to recognize terminal amino acids of peptides (targets) tethered on a next-generation sequencing chip. DNA binders deposit unique, amino acid-identifying barcodes on the chip. The end goal is that, over multiple binding cycles, a sequential chain of DNA barcodes will identify the amino acid sequence of a peptide.
View Article and Find Full Text PDFAptamers are single-stranded nucleic acid ligands that bind to target molecules with high affinity and specificity. They are typically discovered by searching large libraries for sequences with desirable binding properties. These libraries, however, are practically constrained to a fraction of the theoretical sequence space.
View Article and Find Full Text PDFMotivation: Advances in automation and imaging have made it possible to capture a large image dataset that spans multiple experimental batches of data. However, accurate biological comparison across the batches is challenged by batch-to-batch variation (i.e.
View Article and Find Full Text PDFDrug resistance threatens the effective prevention and treatment of an ever-increasing range of human infections. This highlights an urgent need for new and improved drugs with novel mechanisms of action to avoid cross-resistance. Current cell-based drug screens are, however, restricted to binary live/dead readouts with no provision for mechanism of action prediction.
View Article and Find Full Text PDFDespite major advances in targeted melanoma therapies, drug resistance limits their efficacy. Long noncoding RNAs (lncRNAs) are transcriptome elements that do not encode proteins but are important regulatory molecules. LncRNAs have been implicated in cancer development and response to different therapeutics and are thus potential treatment targets; however, the majority of their functions and molecular interactions remain unexplored.
View Article and Find Full Text PDFWe used RNA sequencing to study and characterize the long noncoding RNA (lncRNA) transcriptome in lesional skin from psoriasis patients before (PP) and after treatment (PT) with adalimumab and in normal skin from healthy individuals (NN). To this end, we sequenced total RNA from 18 psoriasis patients and 16 healthy controls. We merged three lncRNA reference datasets to create a single combined reference of 67,157 lncRNA transcripts with no overlaps.
View Article and Find Full Text PDFNF-κB signaling plays a crucial role in regulating proliferation and differentiation in the epidermis. Alterations in the NF-κB pathway can lead to skin pathologies with a significant burden to human health such as psoriasis and cutaneous squamous cell carcinoma (cSCC). Caspase recruitment domain (CARD)-containing scaffold proteins are key regulators of NF-κB signaling by providing a link between membrane receptors and NF-κB transcriptional subunits.
View Article and Find Full Text PDFFusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification.
View Article and Find Full Text PDFCutaneous SCC (cSCC) is the most frequently occuring skin cancer with metastatic potential and can manifest rapidly as a common side effect in patients receiving systemic kinase inhibitors. Here, we use massively parallel exome and targeted level sequencing of 132 sporadic cSCCs and of 39 squamoproliferative lesions and cSCCs arising in patients receiving the BRAF inhibitor vemurafenib, as well as 10 normal skin samples, to identify NOTCH1 mutation as an early event in squamous cell carcinogenesis. Bisected vemurafenib-induced lesions revealed surprising heterogeneity with different activating HRAS and NOTCH1 mutations identified in two halves of the same cSCC, suggesting polyclonal origin.
View Article and Find Full Text PDFPrevious studies have suggested a role for pathogens as a trigger of systemic sclerosis (SSc), although neither a pathogen nor a mechanism of pathogenesis is known. Here we show enrichment of Rhodotorula sequences in the skin of patients with early, diffuse SSc compared with that in normal controls. RNA-seq was performed on four SSc patients and four controls, to a depth of 200 million reads per patient.
View Article and Find Full Text PDFMetagenomics, the study of microbial genomes within diverse environments, is a rapidly developing field. The identification of microbial sequences within a host organism enables the study of human intestinal, respiratory, and skin microbiota, and has allowed the identification of novel viruses in diseases such as Merkel cell carcinoma. There are few publicly available tools for metagenomic high throughput sequence analysis.
View Article and Find Full Text PDFActivating mutations in the neuroblastoma rat sarcoma viral oncogene homolog (NRAS) gene are common genetic events in malignant melanoma being found in 15-25% of cases. NRAS is thought to activate both mitogen activated protein kinase (MAPK) and PI3K signaling in melanoma cells. We studied the influence of different components on the MAP/extracellular signal-regulated (ERK) kinase (MEK) and PI3K/mammalian target of rapamycin (mTOR)-signaling cascade in NRAS mutant melanoma cells.
View Article and Find Full Text PDFIn meiosis, the exchange of DNA between chromosomes by homologous recombination is a critical step that ensures proper chromosome segregation and increases genetic diversity. Products of recombination include reciprocal exchanges, known as crossovers, and non-reciprocal gene conversions or non-crossovers. The mechanisms underlying meiotic recombination remain elusive, largely because of the difficulty of analyzing large numbers of recombination events by traditional genetic methods.
View Article and Find Full Text PDFLow-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome.
View Article and Find Full Text PDFBackground: Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies.
View Article and Find Full Text PDFOver 50% of genes in Plasmodium falciparum, the deadliest human malaria parasite, contain predicted introns, yet experimental characterization of splicing in this organism remains incomplete. We present here a transcriptome-wide characterization of intraerythrocytic splicing events, as captured by RNA-Seq data from four timepoints of a single highly synchronous culture. Gene model-independent analysis of these data in conjunction with publically available RNA-Seq data with HMMSplicer, an in-house developed splice site detection algorithm, revealed a total of 977 new 5' GU-AG 3' and 5 new 5' GC-AG 3' junctions absent from gene models and ESTs (11% increase to the current annotation).
View Article and Find Full Text PDFBackground: High-throughput sequencing of an organism's transcriptome, or RNA-Seq, is a valuable and versatile new strategy for capturing snapshots of gene expression. However, transcriptome sequencing creates a new class of alignment problem: mapping short reads that span exon-exon junctions back to the reference genome, especially in the case where a splice junction is previously unknown.
Methodology/principal Findings: Here we introduce HMMSplicer, an accurate and efficient algorithm for discovering canonical and non-canonical splice junctions in short read datasets.
High-throughput short-read technologies have revolutionized DNA sequencing by drastically reducing the cost per base of sequencing information. Despite producing gigabases of sequence per run, these technologies still present obstacles in resequencing and de novo assembly applications due to biased or insufficient target sequence coverage. We present here a simple sample preparation method termed the "long march" that increases both contig lengths and target sequence coverage using high-throughput short-read technologies.
View Article and Find Full Text PDF