Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms.
View Article and Find Full Text PDFMitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control.
View Article and Find Full Text PDFAn F(1)F(O) ATP synthase in the inner mitochondrial membrane catalyzes the late steps of ATP production via the process of oxidative phosphorylation. A small protein subunit (subunit c or ATP9) of this enzyme shows a substantial genetic diversity, and its gene can be found in both the mitochondrion and/or nucleus. In a representative set of 26 species of fungi for which the genomes have been entirely sequenced, we found five Atp9 gene repartitions.
View Article and Find Full Text PDFBackground: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development.
Results: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection.
RIP (Repeat-Induced point Mutation) and PR (Premeiotic Recombination) are two developmentally regulated processes in filamentous ascomycetes. RIP detects and mutates duplicated DNA sequences, while PR results in deletion of the interstitial sequence between cis-duplicated DNA sequences. These two silencing processes take place between fertilization and premeiotic replication, a period during which the mating-type genes play an active role in several developmental processes.
View Article and Find Full Text PDFIn the filamentous fungus Podospora anserina, two degenerative processes which result in growth arrest are associated with mitochondrial genome (mitochondrial DNA [mtDNA]) instability. Senescence is correlated with mtDNA rearrangements and amplification of specific regions (senDNAs). Premature death syndrome is characterized by the accumulation of specific mtDNA deletions.
View Article and Find Full Text PDF