Background: Various connections have been machined to improve the fit between the dental abutment and implant. In vivo, the instability created by imprecisely fitting components can cause soft tissue irritation and bacterial colonization of the implant system. The aim of this study was to quantify abutment stability under in vitro force applications.
View Article and Find Full Text PDFNatural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated.
View Article and Find Full Text PDFRecombinant human bone morphogenetic protein-2 and -7 were recently granted United States Food and Drug Administration approval for select clinical applications in bone repair. While significant progress has been made in the delivery of recombinant osteogenic factor to promote bone healing, the short half-life and instability of the protein requires the delivery of milligram quantities of factor or multiple dosages. The potential of gene therapy for bone regeneration is the delivery of physiological levels of therapeutic protein using natural cellular mechanisms.
View Article and Find Full Text PDFWe performed a detailed examination of the isolation, characterization, and growth of human osteoblast cells derived from trabecular bone. We further examined the morphology, phenotypic gene expression, mineralization,and growth of these human osteoblasts on polyester polymers used for musculoskeletal tissue engineering. Polylactic-co-glycolic acid [PLAGA (85:15, 50:50, 75:25)], and poly-lactic acid (L-PLA, D,L-PLA) were examined.
View Article and Find Full Text PDFThis study investigated four different connective tissue cell types to determine which cell type should be the source for seeding a tissue-engineered anterior cruciate ligament (ACL) replacement. Cells derived from the ACL, medial collateral ligament (MCL), achilles tendon (AT), and patellar tendon (PT) of New Zealand White rabbits were isolated and cultured. Each cell type was cultured in vitro after seeding on three-dimensional (3-D) braided polymer scaffolds and on tissue culture polystyrene that served as a control.
View Article and Find Full Text PDFClin Orthop Relat Res
October 2004
The use of biodegradable polymers in medicine and biomedical research is increasing. A key growth area has been the use of these materials in tissue engineering, especially for guided regeneration of bone and cartilage. Our interest has been in determining the mechanisms by which cellular attachment and growth occurs on these materials.
View Article and Find Full Text PDFA tissue engineering approach to bone regeneration includes the use of a scaffold, cells and bioactive factors alone or in various combinations. Several investigators have demonstrated enhanced bone formation when the tissue-engineered construct possesses traits inherent to autogenic bone grafts, namely osteoconductivity, osteoinductivity and osteogenicity. Use of the biodegradable polymer poly(lactide-co-glycolide) in combination with bone morphogenetic protein or primary cells genetically modified to release osteogenic protein have demonstrated the ability to induce osteogenic differentiation of, and subsequent mineralization by, muscle-derived cells and mesenchymal stem cells in both in vitro and in vivo applications.
View Article and Find Full Text PDFOne of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA).
View Article and Find Full Text PDFThe large-scale clinical use of tissue engineered constructs will require provisions for its mass availability and accessibility. Therefore, it is imperative to understand the effects of low temperature (-196 degrees C) on the tissue engineered biological system. Initial studies used samples of the osteoblast-like cell line (SaOS-2) adhered to a two-dimensional poly(lactide-co-glycolide) thin film (2D-PLAGA) or a three-dimensional poly(lactide-co-glycolide) sintered microsphere matrix (3D-PLAGA) designed for bone tissue engineering.
View Article and Find Full Text PDFOver 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue.
View Article and Find Full Text PDF