Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.
View Article and Find Full Text PDFAdolescence, a critical period of developmental period, is marked by neurobiological changes influenced by environmental factors. Here, we show how exposure to sucrose, which is ubiquitously available in modern diets, results in changes in behavioural response to cocaine as an adult. Rats were given daily access to either 10% sucrose or water during the adolescent period (PND28-42).
View Article and Find Full Text PDFObjective: To evaluate if oral ketorolac provides effective pain relief during placement of an IUD for contraception.
Methods: We conducted a double-blinded randomized controlled trial in a community hospital in Columbus, Ohio. Participants that met eligibility criteria were consented and randomized to receive either oral ketorolac 20 mg or placebo 40 to 60 minutes before IUD placement.
Proper craniofacial development begins during gastrulation and requires the coordinated integration of each germ layer tissue (ectoderm, mesoderm, and endoderm) and its derivatives in concert with the precise regulation of cell proliferation, migration, and differentiation. Neural crest cells, which are derived from ectoderm, are a migratory progenitor cell population that generates most of the cartilage, bone, and connective tissue of the head and face. Neural crest cell development is regulated by a combination of intrinsic cell autonomous signals acquired during their formation, balanced with extrinsic signals from tissues with which the neural crest cells interact during their migration and differentiation.
View Article and Find Full Text PDFWe recently reported that transforming growth factor (TGF)-beta induced the neural crest stem cell line Monc-1 to differentiate into a spindle-like contractile smooth muscle cell (SMC) phenotype and that Smad signaling played an important role in this phenomenon. In addition to Smad signaling, other pathways such as mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase, and RhoA have also been shown to mediate TGF-beta actions. The objectives of this study were to examine whether these signaling pathways contribute to TGF-beta-induced SMC development and to test whether Smad signaling cross-talks with other pathway(s) during SMC differentiation induced by TGF-beta.
View Article and Find Full Text PDFSmad proteins transduce signals from transforming growth factor-beta (TGF-beta) superfamily ligands to regulate the expression of target genes. In order to identify novel partners of Smad proteins in transcriptional regulation, we performed a two-hybrid screen using Smad5, a protein that is activated predominantly by bone morphogenetic protein (BMP) signaling. We identified an interaction between Smad5 and suppressor of variegation 3-9 homolog 2 (Suv39h2), a chromatin modifier enzyme.
View Article and Find Full Text PDF