Background: Binge ethanol (EtOH) intake during adolescence leads to an array of behavioral and cognitive consequences including elevated intake of EtOH during adulthood, with female mice showing greater susceptibility than males. Administration of the metabotropic glutamate receptor 5 (mGluR5) antagonist 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP) has been shown to reduce EtOH self-administration in adult male mice, but little is known about its effect on female and adolescent mice.
Methods: MTEP (0, 10, 20 mg/kg, i.
Background: Allopregnanolone (ALLO) is a potent positive modulator of γ-aminobutyric acidA receptors (GABAA Rs) that affects ethanol (EtOH) withdrawal. Finasteride (FIN), a 5α-reductase inhibitor that blocks the formation of ALLO and other GABAergic neurosteroids, alters EtOH sensitivity. Recently, we found that Withdrawal Seizure-Prone mice from the first genetic replicate (WSP-1) exhibited behavioral tolerance to the anticonvulsant effect of intrahippocampal ALLO during EtOH withdrawal and that intrahippocampal FIN significantly increased EtOH withdrawal severity.
View Article and Find Full Text PDFSeveral lines of evidence suggest that fluctuations in endogenous levels of the γ-aminobutyric acid (GABA)ergic neurosteroid allopregnanolone (ALLO) represent one mechanism for regulation of GABAergic inhibitory tone in the brain, with an ultimate impact on behavior. Consistent with this idea, there was an inverse relationship between ALLO levels and symptoms of anxiety and depression in humans and convulsive activity in rodents during alcohol withdrawal. Our recent studies examined the activity and expression of 5α-reductase (Srd5a1), the rate-limiting enzyme in the biosynthesis of ALLO, during alcohol withdrawal in mice selectively bred for high chronic alcohol withdrawal (Withdrawal Seizure-Prone [WSP]) and found that Srd5a1 was downregulated in the cortex and hippocampus over the time course of dependence and withdrawal.
View Article and Find Full Text PDFDrinking to intoxication or binge drinking is a hallmark characteristic of alcohol abuse. Although hard to model in rodents, the scheduled high alcohol consumption (SHAC) procedure generates high, stable ethanol intake and blood ethanol concentrations in mice to levels consistent with definitions of binge drinking. The purpose of the present studies was to determine the effects of pharmacological manipulation of the opioidergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic systems on binge drinking with the SHAC procedure.
View Article and Find Full Text PDFBinge drinking, defined as achieving blood ethanol concentrations (BEC) of 80 mg%, has been increasing in adolescents and was reported to predispose later physical dependence. The present experiments utilized an animal model of binge drinking to compare the effect of ethanol "binge" experience during adolescence or adulthood on subsequent ethanol intake in male and female C57BL/6 mice. Adolescent and adult mice were initially exposed to the scheduled high alcohol consumption procedure, which produces BECs that exceed the levels for binge drinking following a 30-min ethanol session every third day.
View Article and Find Full Text PDFBackground: Allopregnanolone (ALLO) is a progesterone derivative that rapidly potentiates gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition and modulates symptoms of ethanol withdrawal. Because clinical and preclinical data indicate that ALLO levels are inversely related to symptoms of withdrawal, the present studies determined whether ethanol dependence and withdrawal differentially altered plasma and cortical ALLO levels in mice selectively bred for differences in ethanol withdrawal severity and determined whether the alterations in ALLO levels corresponded to a concomitant change in activity and expression of the biosynthetic enzyme 5alpha-reductase.
Methods: Male Withdrawal Seizure-Prone (WSP) and -Resistant (WSR) mice were exposed to 72 hours ethanol vapor or air and euthanized at select times following removal from the inhalation chambers.
The progesterone derivative allopregnanolone (ALLO) rapidly potentiates gamma-aminobutyric acid(A) (GABA(A)) receptor mediated inhibition. The present studies determined whether specific manipulation of neurosteroid levels in the hippocampus would alter seizure susceptibility in an animal model genetically susceptible to severe ethanol (EtOH) withdrawal, Withdrawal Seizure-Prone (WSP) mice. Male WSP mice were surgically implanted with bilateral guide cannulae aimed at the CA1 region of the hippocampus one week prior to measuring seizure susceptibility to the convulsant pentylenetetrazol (PTZ), given via timed tail vein infusion.
View Article and Find Full Text PDFThe GABAergic neurosteroid allopregnanolone (ALLO) has been repeatedly shown to have an increased anticonvulsant effect during ethanol withdrawal in rats and in C57BL/6J mice. In contrast, the seizure prone DBA/2J inbred strain and the Withdrawal Seizure-Prone (WSP) selected line exhibited decreased sensitivity to ALLO's anticonvulsant effect during ethanol withdrawal, with no change in sensitivity in the Withdrawal Seizure-Resistant (WSR) line. To date, only male mice have been tested.
View Article and Find Full Text PDFBackground: Studies in rodents have determined that intermittent exposure to alcohol vapor can increase subsequent ethanol self-administration, measured with operant and 2-bottle choice procedures. Two key procedural factors in demonstrating increased alcohol intake are the establishment of stable alcohol self-administration before alcohol vapor exposure and the number of bouts of intermittent vapor exposure. The present studies provide additional behavioral validation and initial pharmacological validation of this withdrawal-associated drinking procedure.
View Article and Find Full Text PDFBackground: The neurosteroid allopregnanolone (ALLO) is a potent positive modulator of gamma-aminobutyric acidA (GABAA) receptors that can modulate ethanol (EtOH) withdrawal. The 5alpha-reductase inhibitor finasteride blocks the formation of ALLO from progesterone and was recently found to reduce certain effects of EtOH. Using the Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) selected lines, in the present studies we examined the effect of finasteride on acute and chronic EtOH withdrawal severity.
View Article and Find Full Text PDFPharmacol Biochem Behav
July 2004
The neurosteroid allopregnanolone (ALLOP) is a very potent positive modulator of gamma-aminobutyric acidA (GABAA) receptors that can modulate ethanol (EtOH) withdrawal. The 5alpha-reductase inhibitor finasteride blocks the formation of ALLOP from progesterone and was recently found to reduce some effects of EtOH. Thus, the present studies were conducted to determine the effect of finasteride on chronic EtOH withdrawal severity in male and female C57BL/6 (B6) and DBA/2 (D2) mice.
View Article and Find Full Text PDF