Publications by authors named "Michelle A Schultz"

Peroxiredoxin-1 (Prdx1), a member of the thioredoxin (Txn) system, is overexpressed and correlates with poor prognosis in pancreatic cancer patients and can suppress Kras signaling through redox-mediated inhibition of ERK and AKT in lung and breast cancer. Its redox function is maintained by Txn and sulfiredoxin (Srxn), and its tumor promoting functions are activated by post-translational modification. We studied the role of the Txn system in pancreatic neoplasia and cancer by determining how it regulates the phosphorylation of Kras effectors and by determining its association with patient survival.

View Article and Find Full Text PDF

Despite androgen deprivation therapy (ADT), persistent androgen receptor (AR) signaling enables outgrowth of castration resistant prostate cancer (CRPC). In prostate cancer (PCa) cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP) and castration resistant (C4-2B) PCa cells.

View Article and Find Full Text PDF

Radiation therapy is an integral part of treatment for cancer patients; however, major side effects of this modality include aberrant bone remodeling and bone loss. Ionizing radiation (IR) is a major external factor that contributes to a significant increase in oxidative stress such as reactive oxygen species (ROS), has been implicated in osteoporotic phenotypes, and has been implicated in osteoporotic phenotypes, bone loss, and fracture risk. One of the major cellular defenses against heightened oxidative stress is mediated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master transcription factor that regulates induction of antioxidant gene expression and phase II antioxidant enzymes.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells.

View Article and Find Full Text PDF