Analysis of thermally labile compounds such as bis(2,2-dinitropropyl) acetal/formal (BDNPA/F), an energetic plasticizer, is usually performed via liquid chromatography (LC) as opposed to gas chromatography (GC) due to thermal decomposition in the inlet or the analytical column. While LC is a powerful technique, the analysis of volatile and semivolatile compounds is best suited to GC. Herein, a method was developed for a gas chromatograph coupled to high-resolution mass spectrometer (GC-HRMS), utilizing a programmable temperature vaporizer (PTV) inlet.
View Article and Find Full Text PDFThe analysis of thermally labile and high-boiling point compounds by gas chromatography (GC) can be a challenge. One technique to overcome these challenges is low-pressure GC, which uses the vacuum produced from the mass spectrometer and wide-bore columns to elute compounds at significantly lower temperatures. While GC-MS is a powerful technique, comprehensive two-dimensional gas chromatography (GC × GC), allows for resolution of compounds that would typically coelute using GC.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2021
Firefighters are exposed to burning materials that may release toxic partial combustion and pyrolysis products into the environment, including compounds listed as priority pollutants by the United States Environmental Protection Agency (EPA). A novel passive sampling dosimeter device containing firefighter turnout gear as a diffusion membrane and an activated charcoal strip (ACS) for volatile analyte collection was designed and used to monitor potential exposures of firefighters to volatile organic compounds. Solvent extracts from the ACS and turnout gear diffusion layer were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) to determine the diffusion of compounds from burned substrates through firefighter turnout gear and compound adsorption to the turnout gear.
View Article and Find Full Text PDF