Recent evidence suggests that synaptic plasticity occurs during homeostatic processes, including sleep-wakefulness regulation, although the underlying mechanisms are not well understood. Polysialylated neural cell adhesion molecule (PSA NCAM) is a transmembrane protein that has been implicated in various forms of plasticity. To investigate whether PSA NCAM is involved in the neuronal plasticity associated with spontaneous sleep-wakefulness regulation and sleep homeostasis, four studies were conducted using rats.
View Article and Find Full Text PDFThe basal forebrain (BF) is known for its role in cortical and behavioral activation, and has been postulated to have a role in compensatory mechanisms after sleep loss. However, specific neuronal phenotypes responsible for these roles are unclear. We investigated the effects of ibotenate (IBO) and 192IgG-saporin (SAP) lesions of the caudal BF on spontaneous sleep-waking and electroencephalogram (EEG), and recovery sleep and EEG after 6 h of sleep deprivation (SD).
View Article and Find Full Text PDF