Publications by authors named "Michelle A Baker"

The effectiveness of wetlands in sequestering nutrients and improving water quality relies on a suite of abiotic and biotic conditions. To more fully understand the restraints on nutrient removal, especially salinity and plant cover, we created field-scale mesocosms and monitored nutrient sequestration with nutrient additions and isotopic pool dilutions over 2 years in two wetlands near the Great Salt Lake in Utah. Surprisingly, we found no differences in nutrient removal with plant removal, increased salinity, and altered ambient nutrient concentrations, suggesting functional redundancy in associated primary producers.

View Article and Find Full Text PDF

Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28-day incubations.

View Article and Find Full Text PDF

Stream bacterioplankton communities, a crucial component of aquatic ecosystems and surface water quality, are shaped by environmental selection (i.e., changes in taxa abundance associated with more or less favorable abiotic conditions) and passive dispersal (i.

View Article and Find Full Text PDF

Bacteria in stream biofilms contribute to stream biogeochemical processes and are potentially sensitive to the substantial levels of pollution entering urban streams. To examine the effects of contaminants on stream biofilm bacteria , we exposed growing biofilms to experimental additions of nutrients [nitrogen (N), phosphorus (P), and iron (Fe)], pharmaceuticals (caffeine and diphenhydramine), nutrients plus pharmaceuticals, or no contaminants using contaminant exposure substrates (CES) in three catchments in northern Utah. We performed our study at montane and urban sites to examine the influence of existing pollution on biofilm response.

View Article and Find Full Text PDF

Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow.

View Article and Find Full Text PDF

Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a mass balance approach.

View Article and Find Full Text PDF