BTV-4 structural proteins VP2 (as two domains: VP2D1 and VP2D2), VP5 (lacking the first 100 amino acids: VP5Δ1-100) and full-length VP7, expressed in bacteria as soluble glutathione S-transferase (GST) fusion-proteins, were used to immunise Balb/c and α/β interferon receptor knock-out (IFNAR(-/-)) mice. Neutralising antibody (NAbs) titres (expressed as log10 of the reciprocal of the last dilution of mouse serum which reduced plaque number by ≥50%) induced by the VP2 domains ranged from 1.806 to 2.
View Article and Find Full Text PDFBluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/β]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown.
View Article and Find Full Text PDFBackground: Vascular smooth muscle cell (VSMC) proliferation and migration are important components of the remodeling process in atherosclerosis or following angioplasty. Atrial natriuretic peptide (ANP) inhibits the growth of VSMCs in vitro but this effect has not been proven in vivo. In the present study, we examined the effects of local overexpression of ANP following gene transfer on in vitro VSMC proliferation and migration and in vivo neointimal formation in a rat carotid artery model of vascular injury.
View Article and Find Full Text PDFPrion diseases are caused by the transconformation of the host cellular prion protein PrP(c) into an infectious neurotoxic isoform called PrP(Sc). While vaccine-induced PrP-specific CD4(+) T cells and antibodies partially protect scrapie-infected mice from disease, the potential autoreactivity of CD8(+) cytotoxic T lymphocytes (CTLs) received little attention. Beneficial or pathogenic influence of PrP(c)-specific CTL was evaluated by stimulating a CD8(+) T-cell-only response against PrP in scrapie-infected C57BL/6 mice.
View Article and Find Full Text PDFBluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) in deer have already been isolated in Reunion Island and have caused more or less severe clinical signs in cattle (EHDV) or in sheep (BTV), as observed in 2003. In January 2009, cattle in Reunion Island showed clinical signs suggesting infection by one or the other of these arboviral diseases. A study was set up to determine the etiology of the disease.
View Article and Find Full Text PDFIn prion diseases, PrP(c), a widely expressed protein, is transformed into a pathogenic form called PrP(Sc), which is in itself infectious. Antibodies directed against PrP(c) have been shown to inhibit PrP(c) to PrP(Sc) conversion in vitro and protect in vivo from disease. Other effectors with potential to eliminate PrPSc-producing cells are cytotoxic T cells directed against PrP-derived peptides but their ability to protect or to induce deleterious autoimmune reactions is not known.
View Article and Find Full Text PDFAn approach to genetically engineered resistance to pseudorabies virus (PRV) infection was examined by using a transgene encoding a soluble form of nectin-1, also known as herpesvirus entry mediator C. Nectin-1 is an alpha-herpesvirus receptor that binds to virion glycoprotein D. Nectin-1 mediates entry of PRV, herpes simplex virus types 1 and 2, and bovine herpesvirus type 1.
View Article and Find Full Text PDFReplication-defective human adenoviruses type 5 (HAd5) expressing the bovine herpesvirus type 1 (BHV-1) glycoprotein gC or gD under the control of the human cytomegalovirus immediate-early promoter/enhancer (AdCMVgC or AdCMVgD) or the 5' regulatory region of the human desmin gene (AdDESMgC or AdDESMgD) were generated. A preliminary experiment performed on rabbits showed that the intranasal administration of AdCMV elicited higher levels of BHV-1 neutralizing antibodies than the intramuscular administration of AdDESM. The obtained results allowed to select the replication-defective AdCMVgC and AdCMVgD for further assessment of their potential as a recombinant vaccine in cattle.
View Article and Find Full Text PDF