Mutat Res Genet Toxicol Environ Mutagen
September 2022
Newborns can experience adverse effects as a consequence of maternal or in utero exposure, altered growth of the fetus, or placental dysfunctions. Accurate characterization of gestational age allows monitoring of fetal growth, identification of deviations from the normal growth trajectory, and classification of babies as adapted, small, or large for gestational age (AGA, SGA, or LGA). The aim of this work was to evaluate nuclear and oxidative damage in umbilical cord-blood cells of newborns (sampled at birth), by applying the γH2AX assay and the fluorescent probe BODIPY C, to detect DNA DSB and cell membrane oxidation, respectively.
View Article and Find Full Text PDFControl of tuberculosis depends on the rapid expression of protective CD4 T-cell responses in the (Mtb)-infected lungs. We have recently shown that the immunomodulatory cytokine IL-10 acts intrinsically in CD4 T cells and impairs their parenchymal migratory capacity, thereby preventing control of Mtb infection. Herein, we show that IL-10 overexpression does not impact the protection conferred by the established memory CD4 T-cell response, as BCG-vaccinated mice overexpressing IL-10 only during Mtb infection display an accelerated, BCG-induced, Ag85b-specific CD4 T-cell response and control Mtb infection.
View Article and Find Full Text PDFImmunological tolerance is a critical feature of the immune system; its loss might lead to an abnormal response of lymphocytes causing autoimmune diseases. One of the most important groups belonging to autoimmune disorders is the connective tissue diseases (CTD). CTD are classified among systemic rheumatic diseases and include pathologies such as systemic lupus erythematosus (SLE), and undifferentiated CTD (UCTD).
View Article and Find Full Text PDFIncreasing evidence suggests that early-life events can predispose the newborn to a variety of health issues in later life. In adverse pre- and perinatal conditions, oxidative stress appears to play an important role in the development of future pathological outcomes. From a molecular point of view, oxidative stress can result in genome damage and changes in DNA methylation that can in turn prime pathogenic mechanisms.
View Article and Find Full Text PDFJ Matern Fetal Neonatal Med
November 2021
Aim: Circular RNAs (circRNAs) are recently discovered and highly stable noncoding RNAs acting as gene regulators. These circRNAs can function as miRNA sponges, thereby upregulating or downregulating miRNA target gene expression. MiR-135b is expressed in placenta tissue and can be found in maternal circulation, thus playing a functional role in pregnancy.
View Article and Find Full Text PDFIntroduction: Words are not processed in isolation but in rich contexts that are used to modulate and facilitate language comprehension. Here, we investigate distinct neural networks underlying two types of contexts, the current linguistic environment and verb-based syntactic preferences.
Methods: We had two main manipulations.
Natural and synthetic electrophilic compounds have been shown to activate the antioxidant protective Nrf2 (nuclear factor erythroid 2-related factor 2)/heme oxygenase-1 (HO-1) axis in cells and tissues. Here, we tested the ability of different isoxazoline-based electrophiles to up-regulate Nrf2/HO-1. The potency of activation is dependent on the leaving group at the 3-position of the isoxazoline nucleus, and an additional ring on the molecule limits the Nrf2/HO-1 activating properties.
View Article and Find Full Text PDFTrypanosoma brucei is the agent of human African trypanosomiasis (HAT), a neglected disease that threatens the lives of 65 million people in sub-Saharan Africa every year. Unfortunately, available therapies are unsatisfactory, due primarily to safety issues and development of drug resistance. Over the last decades significant effort has been made in the discovery of new potential anti-HAT agents, with help from the World Health Organization (WHO) and private-public partnerships such as the Drugs for Neglected Diseases Initiative (DNDi).
View Article and Find Full Text PDFDuring natural speech perception, humans must parse temporally continuous auditory and visual speech signals into sequences of words. However, most studies of speech perception present only single words or syllables. We used electrocorticography (subdural electrodes implanted on the brains of epileptic patients) to investigate the neural mechanisms for processing continuous audiovisual speech signals consisting of individual sentences.
View Article and Find Full Text PDFThe discovery of hemodynamic (BOLD-fMRI) resting-state networks (RSNs) has brought about a fundamental shift in our thinking about the role of intrinsic brain activity. The electrophysiological underpinnings of RSNs remain largely elusive and it has been shown only recently that electric cortical rhythms are organized into the same RSNs as hemodynamic signals. Most electrophysiological studies into RSNs use magnetoencephalography (MEG) or scalp electroencephalography (EEG), which limits the spatial resolution with which electrophysiological RSNs can be observed.
View Article and Find Full Text PDFThe chemoenzymatic flow synthesis of enantiomerically pure captopril, a widely used antihypertensive drug, is accomplished starting from simple, inexpensive, and readily available reagents. The first step is a heterogeneous biocatalyzed regio- and stereoselective oxidation of cheap prochiral 2-methyl-1,3-propandiol, performed in flow using immobilized whole cells of MIM 2000/28, thus avoiding the use of aggressive and environmentally harmful chemical oxidants. The isolation of the highly hydrophilic intermediate ()-3-hydroxy-2-methylpropanoic acid is achieved in-line by using a catch-and-release strategy.
View Article and Find Full Text PDFCognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of "Encoding" models, in which stimulus features are used to model brain activity, and "Decoding" models, in which neural features are used to generated a stimulus output.
View Article and Find Full Text PDFNMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A-D). We describe highly potent ()-5-[()-2-amino-2-carboxyethyl]-4,5-dihydro-1-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors.
View Article and Find Full Text PDFBackground: In the industrialized world, approximately 1-1.5% of the population has received treatments for skin lesions. In the 1990s, a polymeric barrier film called the No Sting Barrier Film (NSBF) was developed as an alternative to petrolatum-based ointments and zinc oxide formulas.
View Article and Find Full Text PDFAbnormal activity of various N-methyl-d-aspartate receptor (NMDAR) subtypes has been implicated in a wide variety of neurological disorders such as Alzheimer's disease, schizophrenia, and epilepsy. Imaging agents for PET and SPECT that target NMDARs in a subtype-selective fashion may enable better characterization of those disorders and enhance drug development. On the basis of a pyrazoline derivative that demonstrated neuroprotective effects in vivo, we synthesized a series of para-substituted analogues and measured their affinities to various NMDAR subtypes.
View Article and Find Full Text PDFHomologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists.
View Article and Find Full Text PDFCompounds based on the 3-Br-isoxazoline scaffold fully inhibit glyceraldehyde 3-phosphate dehydrogenase from Plasmodium falciparum by selectively alkylating all four catalytic cysteines of the tetramer. Here, we show that, under the same experimental conditions that led to a fast and complete inhibition of the protozoan enzyme, the human ortholog was only 25% inhibited, with the alkylation of a single catalytic cysteine within the tetramer. The partial alkylation seems to produce a slow conformational rearrangement that severely limits the accessibility of the remaining active sites to bulky 3-Br-isoxazoline derivatives, but not to the substrate or smaller alkylating agents.
View Article and Find Full Text PDFOver the past few decades, there has been an increasing interest in the development of covalent enzyme inhibitors. As it was recently re-emphasized, the selective, covalent binding of a drug to the desired target can increase efficiency and lower the inhibitor concentration required to achieve a therapeutic effect. In this context, the naturally occurring antibiotic acivicin, and in particular its 3-chloro-4,5-dihydroisoxazole scaffold, has provided a wealth of inspiration to medicinal chemists and chemical biologists alike.
View Article and Find Full Text PDFNovel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation were developed; some of them possess K(i) values in the micromolar range. We studied the structure-activity relationship of these derivatives and we performed docking studies, which allowed us to find out the key interactions established by the inhibitors with the target enzyme. Biological results indicate that the nature of the P2 and P3 substituents and their binding to the S2/S3 pockets is strictly interdependent.
View Article and Find Full Text PDFThe bifunctional enzyme N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3.
View Article and Find Full Text PDFKnowledge on ecosystem functioning can largely contribute to promote ecosystem-based management and its application. The Mar Piccolo of Taranto is a densely populated area at a high risk of environmental crisis. Here, planktonic primary production (PP) and heterotrophic prokaryotic production (HPP) were measured as proxies of functioning in three sampling sites located in two inlets at different levels of industrial contamination, during three sampling surveys (June 2013, February and April 2014).
View Article and Find Full Text PDFThe inferior frontal gyrus (IFG) and the temporo-parietal junction (TPJ) are believed to be core structures of human brain networks that activate when sensory top-down expectancies guide goal directed behavior and attentive perception. But it is unclear how activity in IFG and TPJ coordinates during attention demanding tasks and whether functional interactions between both structures are related to successful attentional performance. Here, we tested these questions in electrocorticographic (ECoG) recordings in human subjects using a visual detection task that required sustained attentional expectancy in order to detect non-salient, near-threshold visual events.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) play an important role in many central nervous system disorders such as Alzheimer's and Parkinson's diseases, schizophrenia, and mood disorders. The α(4)β(2) subtype has emerged as an important target for the early diagnosis and amelioration of Alzheimer's disease symptoms. Herein we report a new class of α(4)β(2) receptor ligands characterized by a basic pyrrolidine nucleus, the basicity of which was properly decreased through the insertion of a fluorine atom at the 3-position, and a pyridine ring carrying at the 3-position substituents known to positively affect affinity and selectivity toward the α(4)β(2) subtype.
View Article and Find Full Text PDF