The present study has focused on the mainstream integration of polyhydroxyalkanoate (PHA) production with industrial wastewater treatment by exploiting three different technologies all operating in sequencing batch reactors (SBR): conventional activated sludge (AS-SBR), membrane bioreactor (AS-MBR) and aerobic granular sludge (AGS). A full aerobic feast/famine strategy was adopted to obtain enrichment of biomass with PHA-storing bacteria. All the systems were operated at different organic loading (OLR) rate equal to 1-2-3 kgCOD/m∙d in three respective experimental periods.
View Article and Find Full Text PDFMinimization of excess sludge produced by wastewater treatment plants has become a topical theme nowadays. One of the most used approaches to achieve this aim is the anaerobic side-stream reactor (ASSR) process. This is considered affected by the hydraulic retention time (HRT) of the anaerobic reactor, the anaerobic sludge loading rate (ASLR) and the sludge interchange ratio (SIR), although, studies available in the literature did not reflect a clear relationship with the sludge minimization yields.
View Article and Find Full Text PDFJ Environ Manage
February 2024
The present study investigated the combined production of reclaimed water for reuse purposes and polyhydroxyalkanoates (PHA) from an agro-food industrial wastewater. A pilot plant implementing a two-stage process for PHA production was studied. It consisted of a mainstream sequencing batch membrane bioreactor (SBMBR) in which selection of PHA-accumulating organisms and wastewater treatment were carried out in, and a side-stream fed-batch reactor (FBR) where the excess sludge from the SBMBR was used for PHA accumulation.
View Article and Find Full Text PDFIn the present research, insights about the mechanisms of excess sludge minimization occurring in an oxic-settling-anaerobic (OSA) were provided. The investigation involved two systems operating in parallel. In particular, a conventional activated sludge (CAS) system as control and a system implementing the OSA process both having a pre-denitrification scheme were considered.
View Article and Find Full Text PDFCitrus wastewaters (CWWs) are by-products of the citrus fruit transformation process. Currently, more than 700 million of m³ of CWWs per year are produced worldwide. Until nowadays, the management of CWWs is based on a take-make-use-dispose model.
View Article and Find Full Text PDFFouling is considered one of the main drawbacks of membrane bioreactor (MBR) technology. Among the main fouling agents, extracellular polymeric substances (EPS) are considered one of the most impactful since they cause the decrease of sludge filterability and decline of membrane flux in the long term. The present study investigated a biological strategy to reduce the membrane-fouling tendency in MBR systems.
View Article and Find Full Text PDFMembranes (Basel)
March 2022
In this study, the presence of microplastics in the sludge of three wastewater treatment plants (WWTPs) was examined. The investigated WWTPs operated based on a conventional activated sludge (CAS) process, with (W1) or without (W2) primary clarification, and a membrane bioreactor process (MBR) (W3). The microplastics (MPs) concentration in the samples of W3 was approximately 81.
View Article and Find Full Text PDFThe aim of this study was to evaluate the effect of the inoculum to substrate ratio (ISR) and the mixture ratio between organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) on the methane production potential achievable from anaerobic co-digestion (AcoD). Biochemical Methane Potential (BMP) assays at mesophilic temperature were used to determine the best AcoD configuration for maximizing methane yield and production rate, as well as to address possible synergistic effects. The maximum methane yield was observed at ISR of 1 and 60% OFMSW: 40% SS as co-digestion mixture, whereas the highest methane production rate was achieved at ISR of 2 with the same mixture ratio (207 mL/gVS/d).
View Article and Find Full Text PDFIn this study, three different aerobic granular sludge (AGS) reactors fed with anaerobically pre-treated brewery wastewater were studied. The AGS reactors were operated under different conditions including organic loading rates (OLR) between 0.8 and 4.
View Article and Find Full Text PDFThe integration of one anaerobic reactor in the mainstream (AMSR) of a pre-denitritication-MBR was evaluated with the aim to achieve simultaneous sludge minimization and phosphorous removal. The excess sludge production was reduced by 64% when the AMSR was operated under 8 h of hydraulic retention time (HRT). The highest nutrients removal performances referred to organic carbon (98%), nitrogen (90%) and phosphorous (97%) were obtained under 8 h of HRT.
View Article and Find Full Text PDFThis study investigated the chance to couple the conventional Oxic Settling Anaerobic (OSA) process with a thermic treatment at moderate temperature (35 °C). The maximum excess sludge reduction rate (80%) was achieved when the plant was operated under 3 h of hydraulic retention time (HRT). Compared with the conventional OSA system, the thermic treatment enabled a further improvement in excess sludge minimization of 35%.
View Article and Find Full Text PDFThe biodegradability and treatability of a young (3 years old) municipal landfill leachate was evaluated by means of chemical oxygen demand (COD) fractionation tests, based on respirometric techniques. The tests were performed using two different biomasses: one cultivated from the raw leachate (autochthonous biomass) and the other collected from a conventional municipal wastewater treatment plant after its acclimation to leachate (allochthonous biomass). The long term performances of the two biomasses were also studied.
View Article and Find Full Text PDFBiological nutrient removal performances and kinetics of autochthonous marine biomass in forms of activated sludge and aerobic granular sludge were investigated under different salinity and sludge retention time (SRT). Both the biomasses, cultivated from a fish-canning wastewater, were subjected to stepwise increases in salinity (+2 gNaCl L), from 30 gNaCl L up to 50 gNaCl L with the aim to evaluate the maximum potential in withstanding salinity by the autochthonous marine biomass. Microbial marine species belonging to the genus of Cryomorphaceae and of Rhodobacteraceae were found dominant in both the systems at the maximum salinity tested (50 gNaCl L).
View Article and Find Full Text PDFExcess sludge minimization was studied in a MBR with pre-denitrification scheme. Sludge minimization, nitrogen removal performance and membrane fouling tendency were investigated in two configurations, characterized by a different position of the sludge retention reactor (SRR). In particular, the SRR was placed: i) in the return activated sludge line (Anaerobic Side-Stream Reactor - ASSR configuration) and ii) in the mainstream between the anoxic and aerobic reactor (Anaerobic Main-Stream Reactor - AMSR configuration).
View Article and Find Full Text PDFIn the present paper, the feasibility of citrus wastewater treatment with aerobic granular sludge sequencing batch reactors (AGSBR) was investigated. Two AGSBRs (named R1 and R2, respectively) were operated for 90 days under different organic loading rates (OLR) and pH in two experimental periods. The OLR ranged approximately between 3.
View Article and Find Full Text PDFAutochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process.
View Article and Find Full Text PDFThe modification of the physical properties of aerobic granular sludge treating fish-canning wastewater is discussed in this paper. The structure and composition of the Extracellular Polymeric Substances (EPSs) were analyzed at different salinity levels and related to granules stability. Results outlined that the total EPSs content increased with salinity, despite the EPSs increment was not proportional to the salt concentration.
View Article and Find Full Text PDFResults obtained from three aerobic granular sludge reactors treating brewery wastewater are presented. Reactors were operated for 60d days in each of the two periods under different cycle duration: (Period I) short 6h cycle, and (Period II) long 12h cycle. Organic loading rates (OLR) varying from 0.
View Article and Find Full Text PDFThis work aims to investigate the stability of aerobic granular sludge in the long term, focusing on the clogging of the granular sludge porosity exerted by the extracellular polymeric substances (EPSs). The effects of different cycle lengths (short and long-term cycle) on the granular sludge stability were investigated. Results obtained outlined that during the short duration cycle, the formation and breakage of the aerobic granules were continuously observed.
View Article and Find Full Text PDFFish processing industries produce wastewater containing high amounts of salt, organic matter and nitrogen. Biological treatment of such wastewaters could be problematic due to inhibitory effects exerted by high salinity levels. In detail, high salt concentrations lead to the accumulation of nitrite due to the inhibition of nitrite-oxidizing bacteria.
View Article and Find Full Text PDFJ Hazard Mater
December 2015
In order to prevent hydrocarbon discharge at sea from ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which any oil and oil residue discharged in wastewater streams must contain less than 5 ppm hydrocarbons. Effective treatment of this petroleum-contaminated water is essential prior to its release into the environment, in order to prevent pollution problem for marine ecosystems as well as for human health. Therefore, two bench scale membrane bioreactors (MBRs) were investigated for hydrocarbon biodegradation.
View Article and Find Full Text PDFThe effect of a sharp variation of C/N ratio in a moving bed membrane bioreactor (MB-MBR) pilot plant treating high strength wastewater has been investigated. The experimental campaign was divided into two periods, each characterized by a different C/N ratio (namely, 2.5 and 15, Period 1 and Period 2, respectively).
View Article and Find Full Text PDFA bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed.
View Article and Find Full Text PDFTwo pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed.
View Article and Find Full Text PDF