Background: Accurate predictions of animal occurrence in time and space are crucial for informing and implementing science-based management strategies for threatened species.
Methods: We compiled known, available satellite tracking data for pygmy blue whales in the Eastern Indian Ocean (n = 38), applied movement models to define low (foraging and reproduction) and high (migratory) move persistence underlying location estimates and matched these with environmental data. We then used machine learning models to identify the relationship between whale occurrence and environment, and predict foraging and migration habitat suitability in Australia and Southeast Asia.
Background: Measuring coastal-pelagic prey fields at scales relevant to the movements of marine predators is challenging due to the dynamic and ephemeral nature of these environments. Whale sharks (Rhincodon typus) are thought to aggregate in nearshore tropical waters due to seasonally enhanced foraging opportunities. This implies that the three-dimensional movements of these animals may be associated with bio-physical properties that enhance prey availability.
View Article and Find Full Text PDFTerrestrial, marine and freshwater realms are inherently linked through ecological, biogeochemical and/or physical processes. An understanding of these connections is critical to optimise management strategies and ensure the ongoing resilience of ecosystems. Artificial light at night (ALAN) is a global stressor that can profoundly affect a wide range of organisms and habitats and impact multiple realms.
View Article and Find Full Text PDFKnowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species.
View Article and Find Full Text PDFMarine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation.
View Article and Find Full Text PDFOffshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats.
View Article and Find Full Text PDFEffective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries.
View Article and Find Full Text PDFThere have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats.
View Article and Find Full Text PDFTiger sharks were sampled off the western (Ningaloo Reef, Shark Bay) and eastern (the Great Barrier Reef; GBR, Queensland and New South Wales; NSW) coastlines of Australia. Multiple tissues were collected from each shark to investigate the effects of location, size and sex of sharks on δC and δN stable isotopes among these locations. Isotopic composition of sharks sampled in reef and seagrass habitats (Shark Bay, GBR) reflected seagrass-based food-webs, whereas at Ningaloo Reef analysis revealed a dietary transition between pelagic and seagrass food-webs.
View Article and Find Full Text PDFCetacean energy stores are known to vary according to life history, reproductive status and time of year; however, the opportunity to quantify these relationships is rare. Using a unique set of historical whaling records from Western Australia (1952-1963), we investigated energy stores of large cetaceans with differing life histories, and quantified the relationship between total body lipid and length for humpback whales ( ( = 905) and sperm whales ( = 1961). We found that total body lipid increased with body length in both humpback and sperm whales, consistent with size-related energy stores.
View Article and Find Full Text PDFThe growing number of large databases of animal tracking provides an opportunity for analyses of movement patterns at the scales of populations and even species. We used analytical approaches, developed to cope with "big data", that require no 'a priori' assumptions about the behaviour of the target agents, to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina) in the Southern Ocean, that was comprised of >500,000 location estimates collected over more than a decade. Our analyses showed that the displacements of these seals were described by a truncated power law distribution across several spatial and temporal scales, with a clear signature of directed movement.
View Article and Find Full Text PDFMobile phones and other geolocated devices have produced unprecedented volumes of data on human movement. Analysis of pooled individual human trajectories using big data approaches has revealed a wealth of emergent features that have ecological parallels in animals across a diverse array of phenomena including commuting, epidemics, the spread of innovations and culture, and collective behaviour. Movement ecology, which explores how animals cope with and optimize variability in resources, has the potential to provide a theoretical framework to aid an understanding of human mobility and its impacts on ecosystems.
View Article and Find Full Text PDFWe examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array.
View Article and Find Full Text PDFBody size and age at maturity are indicative of the vulnerability of a species to extinction. However, they are both difficult to estimate for large animals that cannot be restrained for measurement. For very large species such as whale sharks, body size is commonly estimated visually, potentially resulting in the addition of errors and bias.
View Article and Find Full Text PDFIt is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field.
View Article and Find Full Text PDFTiger sharks (Galeocerdo cuvier) are apex predators occurring in most tropical and warm temperate marine ecosystems, but we know relatively little of their patterns of residency and movement over large spatial and temporal scales. We deployed satellite tags on eleven tiger sharks off the north-western coast of Western Australia and used the Brownian Bridge kernel method to calculate home ranges and analyse movement behaviour. One individual recorded one of the largest geographical ranges of movement ever reported for the species, travelling over 4000 km during 517 days of monitoring.
View Article and Find Full Text PDFMillimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7-24.
View Article and Find Full Text PDFPlastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories.
View Article and Find Full Text PDFBackground: Rising sea temperatures are causing significant destruction to coral reef ecosystems due to coral mortality from thermally-induced bleaching (loss of symbiotic algae and/or their photosynthetic pigments). Although bleaching has been intensively studied in corals, little is known about the causes and consequences of bleaching in other tropical symbiotic organisms.
Methodology/principal Findings: This study used underwater visual surveys to investigate bleaching in the 10 species of anemones that host anemonefishes.
1. Body condition plays a fundamental role in many ecological and evolutionary processes at a variety of scales and across a broad range of animal taxa. An understanding of how body condition changes at fine spatial and temporal scales as a result of interaction with the environment provides necessary information about how animals acquire resources.
View Article and Find Full Text PDFDuring the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis.
View Article and Find Full Text PDFJ R Soc Interface
January 2013
Many fishes make frequent ascents to surface waters and often show prolonged surface swimming following descents to deep water. This affinity for the surface is thought to be related to the recovery of body heat lost at depth. We tested this hypothesis using data from time–depth recorders deployed on four whale sharks (Rhincodon typus).
View Article and Find Full Text PDF