Advanced numerical simulations of the mechanical behavior of human skin require thorough calibration of the material's constitutive models based on experimental ex vivo mechanical tests along with images of tissue microstructure for a variety of biomedical applications. In this work, a total of 14 human healthy skin samples and 4 additional scarred skin samples were experimentally analyzed to gain deep insights into the biomechanics of human skin. In particular, second harmonic generation (SHG) microscopy was used to extract detailed images of the distribution of collagen fibers, which were subsequently processed using a three-dimensional Fourier transform-based method recently proposed by the authors to quantify the distribution of fiber orientations.
View Article and Find Full Text PDFBrain disorders represent an ever-increasing health challenge worldwide. While conventional drug therapies are less effective due to the presence of the blood-brain barrier, infusion-based methods of drug delivery to the brain represent a promising option. Since these methods are mechanically controlled and involve multiple physical phases ranging from the neural and molecular scales to the brain scale, highly efficient and precise delivery procedures can significantly benefit from a comprehensive understanding of drug-brain and device-brain interactions.
View Article and Find Full Text PDFSeveral materials and tissues are characterized by a microstructure composed of fibrous units embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based method for quantifying the distribution of fiber orientations is presented. The method allows for an accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and showed fast computation times.
View Article and Find Full Text PDFIn this study, we propose a novel micromechanical model for the brain white matter, which is described as a heterogeneous material with a complex network of axon fibers embedded in a soft ground matrix. We developed this model in the framework of RVE-based multiscale theories in combination with the finite element method and the embedded element technique for embedding the fibers. Microstructural features such as axon diameter, orientation and tortuosity are incorporated into the model through distributions derived from histological data.
View Article and Find Full Text PDFAbdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions.
View Article and Find Full Text PDFtissue engineering offers an innovative solution for replacement valves and grafts in cardiovascular medicine. In this approach, a scaffold, which can be obtained by polymer electrospinning, is implanted into the human body and then infiltrated by cells, eventually replacing the scaffold with native tissue. simulations of the whole process in patient-specific models, including implantation, growth and degradation, are very attractive to study the factors that might influence the end result.
View Article and Find Full Text PDFThe integrity of soft materials against puncturing is of great relevance for their performance because of the high sensitivity to local rupture caused by rigid sharp objects. In this work, the mechanics of puncturing is studied with respect to a sharp-tipped rigid needle with a circular cross section, penetrating a soft target solid. The failure mode associated with puncturing is identified as a mode-I crack propagation, which is analytically described by a two-dimensional model of the target solid, taking place in a plane normal to the penetration axis.
View Article and Find Full Text PDFUnderstanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase.
View Article and Find Full Text PDFPenetration of a flexible and steerable needle into a soft target material is a complex problem to be modelled, involving several mechanical challenges. In the present paper, an adaptive finite element algorithm is developed to simulate the penetration of a steerable needle in brain-like gelatine material, where the penetration path is not predetermined. The geometry of the needle tip induces asymmetric tractions along the tool-substrate frictional interfaces, generating a bending action on the needle in addition to combined normal and shear loading in the region where fracture takes place during penetration.
View Article and Find Full Text PDF