Background: Prematurity is the strongest predictor of bronchopulmonary dysplasia (BPD). Most previous studies investigated additional risk factors by conventional statistics, while the few studies applying artificial intelligence, and specifically machine learning (ML), for this purpose were mainly targeted to the predictive ability of specific interventions. This study aimed to apply ML to identify, among routinely collected data, variables predictive of BPD, and to compare these variables with those identified through conventional statistics.
View Article and Find Full Text PDF