Publications by authors named "Michele Starnini"

At the beginning of the COVID-19 pandemic, fears grew that making vaccination a political (instead of public health) issue may impact the efficacy of this life-saving intervention, spurring the spread of vaccine-hesitant content. In this study, we examine whether there is a relationship between the political interest of social media users and their exposure to vaccine-hesitant content on Twitter. We focus on 17 European countries using a multilingual, longitudinal dataset of tweets spanning the period before COVID, up to the vaccine roll-out.

View Article and Find Full Text PDF

Many complex systems that exhibit temporal nonpairwise interactions can be represented by means of generative higher-order network models. Here, we propose a hidden variable formalism to analytically characterize a general class of higher-order network models. We apply our framework to a temporal higher-order activity-driven model, providing analytical expressions for the main topological properties of the time-integrated hypergraphs, depending on the integration time and the activity distributions characterizing the model.

View Article and Find Full Text PDF

Thyroid nodules are very common, 5-15% of which are malignant. Despite the low mortality rate of well-differentiated thyroid cancer, some variants may behave aggressively, making nodule differentiation mandatory. Ultrasound and fine-needle aspiration biopsy are simple, safe, cost-effective and accurate diagnostic tools, but have some potential limits.

View Article and Find Full Text PDF

Online social media foster the creation of active communities around shared narratives. Such communities may turn into incubators for conspiracy theories-some spreading violent messages that could sharpen the debate and potentially harm society. To face these phenomena, most social media platforms implemented moderation policies, ranging from posting warning labels up to deplatforming, i.

View Article and Find Full Text PDF

Understanding the dynamics of opinion depolarization is pivotal to reducing the political divide in our society. We propose an opinion dynamics model, which we name the social compass model, for interdependent topics represented in a polar space, where zealots holding extreme opinions are less prone to change their minds. We analytically show that the phase transition from polarization to consensus, as a function of increasing social influence, is explosive if topics are not correlated.

View Article and Find Full Text PDF

Background: Antivaccination views pervade online social media, fueling distrust in scientific expertise and increasing the number of vaccine-hesitant individuals. Although previous studies focused on specific countries, the COVID-19 pandemic has brought the vaccination discourse worldwide, underpinning the need to tackle low-credible information flows on a global scale to design effective countermeasures.

Objective: This study aimed to quantify cross-border misinformation flows among users exposed to antivaccination (no-vax) content and the effects of content moderation on vaccine-related misinformation.

View Article and Find Full Text PDF

In January 2021, retail investors coordinated on Reddit to target short-selling activity by hedge funds on GameStop shares, causing a surge in the share price and triggering significant losses for the funds involved. Such an effective collective action was unprecedented in finance, and its dynamics remain unclear. Here, we analyse Reddit and financial data and rationalize the events based on recent findings describing how a small fraction of committed individuals may trigger behavioural cascades.

View Article and Find Full Text PDF

Vaccine hesitancy is considered as one of the leading causes for the resurgence of vaccine preventable diseases. A non-negligible minority of parents does not fully adhere to the recommended vaccination schedule, leading their children to be partially immunized and at higher risk of contracting vaccine preventable diseases. Here, we leverage more than one million comments of 201,986 users posted from March 2008 to April 2019 on the public online forum BabyCenter US to learn more about such parents.

View Article and Find Full Text PDF

Unlabelled: National stay-at-home orders, or lockdowns, were imposed in several countries to drastically reduce the social interactions mainly responsible for the transmission of the SARS-CoV-2 virus. Despite being essential to slow down the COVID-19 pandemic, these containment measures are associated with an economic burden. In this work, we propose a network approach to model the implementation of a partial lockdown, breaking the society into disconnected components, or partitions.

View Article and Find Full Text PDF

Social media may limit the exposure to diverse perspectives and favor the formation of groups of like-minded users framing and reinforcing a shared narrative, that is, echo chambers. However, the interaction paradigms among users and feed algorithms greatly vary across social media platforms. This paper explores the key differences between the main social media platforms and how they are likely to influence information spreading and echo chambers' formation.

View Article and Find Full Text PDF

Echo chambers in online social networks, whereby users' beliefs are reinforced by interactions with like-minded peers and insulation from others' points of view, have been decried as a cause of political polarization. Here, we investigate their role in the debate around the 2016 US elections on Reddit, a fundamental platform for the success of Donald Trump. We identify Trump vs Clinton supporters and reconstruct their political interaction network.

View Article and Find Full Text PDF

Emergency Medical Services (EMS) plays a fundamental role in providing good quality healthcare services to citizens, as they are the first responders in distressing situations. Few studies have used available EMS data to investigate EMS call characteristics and subsequent responses. Data were extracted from the emergency registry for the period 2013-2017.

View Article and Find Full Text PDF

Background: The exposure and consumption of information during epidemic outbreaks may alter people's risk perception and trigger behavioral changes, which can ultimately affect the evolution of the disease. It is thus of utmost importance to map the dissemination of information by mainstream media outlets and the public response to this information. However, our understanding of this exposure-response dynamic during the COVID-19 pandemic is still limited.

View Article and Find Full Text PDF

Echo chambers and opinion polarization recently quantified in several sociopolitical contexts and across different social media raise concerns on their potential impact on the spread of misinformation and on the openness of debates. Despite increasing efforts, the dynamics leading to the emergence of these phenomena remain unclear. We propose a model that introduces the dynamics of radicalization as a reinforcing mechanism driving the evolution to extreme opinions from moderate initial conditions.

View Article and Find Full Text PDF

The increasing integration of world economies, which organize in complex multilayer networks of interactions, is one of the critical factors for the global propagation of economic crises. We adopt the network science approach to quantify shock propagation on the global trade-investment multiplex network. To this aim, we propose a model that couples a spreading dynamics, describing how economic distress propagates between connected countries, with an internal contagion mechanism, describing the spreading of such economic distress within a given country.

View Article and Find Full Text PDF

We investigate the effects of modular and temporal connectivity patterns on epidemic spreading. To this end, we introduce and analytically characterise a model of time-varying networks with tunable modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recovered, SIR, models and the epidemic threshold of Susceptible-Infected-Susceptible, SIS, models.

View Article and Find Full Text PDF

Information routing is one of the main tasks in many complex networks with a communication function. Maps produced by embedding the networks in hyperbolic space can assist this task enabling the implementation of efficient navigation strategies. However, only static maps have been considered so far, while navigation in more realistic situations, where the network structure may vary in time, remains largely unexplored.

View Article and Find Full Text PDF

Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks.

View Article and Find Full Text PDF

A general formalism is introduced to allow the steady state of non-Markovian processes on networks to be reduced to equivalent Markovian processes on the same substrates. The example of an epidemic spreading process is considered in detail, where all the non-Markovian aspects are shown to be captured within a single parameter, the effective infection rate. Remarkably, this result is independent of the topology of the underlying network, as demonstrated by numerical simulations on two-dimensional lattices and various types of random networks.

View Article and Find Full Text PDF

We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Activity Driven (NoPAD) model [Moinet et al., Phys. Rev.

View Article and Find Full Text PDF

Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.

View Article and Find Full Text PDF

The presence of burstiness in temporal social networks, revealed by a power-law form of the waiting time distribution of consecutive interactions, is expected to produce aging effects in the corresponding time-integrated network. Here, we propose an analytically tractable model, in which interactions among the agents are ruled by a renewal process, that is able to reproduce this aging behavior. We develop an analytic solution for the topological properties of the integrated network produced by the model, finding that the time translation invariance of the degree distribution is broken.

View Article and Find Full Text PDF

We study the temporal percolation properties of temporal networks by taking as a representative example the recently proposed activity-driven-network model [N. Perra et al., Sci.

View Article and Find Full Text PDF

Spreading processes represent a very efficient tool to investigate the structural properties of networks and the relative importance of their constituents, and have been widely used to this aim in static networks. Here we consider simple disease spreading processes on empirical time-varying networks of contacts between individuals, and compare the effect of several immunization strategies on these processes. An immunization strategy is defined as the choice of a set of nodes (individuals) who cannot catch nor transmit the disease.

View Article and Find Full Text PDF