Publications by authors named "Michele Sferrazza"

Specular and off-specular neutron reflectometry have been used in a combined approach to study thin polymer films. Our goal in this work is to illustrate the power of the off-specular scattering technique to probe the properties of the buried interface of immiscible polymer bilayers of deuterated polystyrene and protonated poly(methyl methacrylate) (h-PMMA). The diffuse scattering stemming from these systems is discussed in relation to thermal fluctuations at the polymer/polymer interface, providing a means to extract in-plane correlation lengths from buried interfaces.

View Article and Find Full Text PDF

The interaction between two immiscible materials is related to the number of contacts per unit area formed by the two materials. For practical reasons, this information is often parametrized by the interfacial free energy, which is commonly derived via rather cumbersome approaches, where properties of the interface are described by combining surface parameters of the single materials. These , however, neglect any effect that geometry might have on the strength of the interfacial interaction.

View Article and Find Full Text PDF

The presence of a substrate-induced polymorph of 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene is probed in microscopic crystals and in thin films. Two experimental techniques are used: lattice phonon Raman and IR spectroscopy. The bulk crystal and substrate-induced phase have an entirely different molecular packing, and therefore, their Raman spectra are characteristic fingerprints of the respective polymorphs.

View Article and Find Full Text PDF

The discussions on the nanoconfinement effect on the glass transition and glassy dynamics phenomena have yielded many open questions. Here, the thickness dependence of the thermal glass transition temperature of thin films of a PVME/PS blend is investigated by ellipsometry. Its thickness dependence was compared to that of the dynamic glass transition (measured by specific heat spectroscopy) and the deduced Vogel temperature ().

View Article and Find Full Text PDF

Controlling polymer/substrate interfaces without modifying chemistry is nowadays possible by finely tuning the formation of adsorbed layers. The complex processes leading to irreversible attachment of chains onto solid substrates are governed by two mechanisms: molecular rearrangement and potential-driven adsorption. Here we introduce an analytical method to differentiate these two mechanisms.

View Article and Find Full Text PDF

We investigated the impact of irreversible adsorption on the mechanisms of thermal expansion of 1D confined polymer layers. For spincoated films (polystyrene on aluminum) of constant thickness, the thermal expansion coefficient of the melt drops upon annealing following the kinetics of irreversible adsorption of the chains onto the supporting substrate, while the thermal expansion of the glass is annealing invariant. These perturbations are explained in terms of the reduction in free volume content, upon immobilization of monomers onto the substrate.

View Article and Find Full Text PDF

When cooled at constant rate, a 25 nm thin film of poly(4--butylstyrene) vitrifies 50 K lower than in bulk. This record sets the largest depression in thermal glass transition temperature () ever observed upon confinement at the nanoscale level. Same as for other supported polymer layers, this reduction in has been attributed to the presence of a free surface, the ensemble of molecules at the interface with air remaining in the liquid state also at temperatures well below bulk .

View Article and Find Full Text PDF

Growing experimental evidence shows that the behavior of polymer chains confined at the nanoscale level strongly depends on the degree of adsorption correlated to the number density of monomers pinned onto the supporting substrate. In this contribution, after introducing the physics behind the mechanisms of irreversible adsorption, we review recent experimental observations on how adsorption affects properties of polymer melts confined in 1D, focusing on those related to the thermal glass transition, maximum water uptake, viscosity and crystallization. These findings strongly support a new physical framework of confined soft matter, not trivially limited to finite size effects and interfacial interactions, but also enriched by non-equilibrium phenomena.

View Article and Find Full Text PDF

The structural organization and evolution of the organic semiconducting molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]-benzothiophene on a soft matrix is studied. Thin films of a blend formed from polystyrene and the molecule were prepared by spin-coating onto silicon substrates, which were subsequently studied by using a combination of microscopy and scattering techniques. The organic semiconducting molecule segregated to the surface and developed a phase with a different structure to the bulk, as in the case of a substrate induced phase observed previously.

View Article and Find Full Text PDF

The effects of interface roughness between donor and acceptor in a bilayer heterojunction solar cell were investigated on a polymer-polymer system based on poly(3-hexylthiophene) (P3HT) and poly(dioctylfluorene-alt-benzothiadiazole) (F8BT). Both polymers are known to reorganize into semicrystalline structures when heated above their glass-transition temperature. Here, the bilayers were thermally annealed below glass transition of the bulk polymers (≈140 °C) at temperatures of 90, 100, and 110 °C for time periods from 2 min up to 250 min.

View Article and Find Full Text PDF

Glass forming systems are characterized by a stability against crystallization upon heating and by the easiness with which their liquid phase can be transformed into a solid lacking of long-range order upon cooling (glass forming ability). Here, we report the thickness dependence of the thermal phase transition temperatures of poly(l-lactide acid) thin films supported onto solid substrates. The determination of the glass transition, cold crystallization and melting temperatures down to a thickness of 6 nm, permitted us to build up parameters describing glass stability and glass forming ability.

View Article and Find Full Text PDF

The origins of specific polymorphic phases within thin films are still not well understood. The polymorphism of the molecule dioctyl-terthiophene is investigated during the presence of a silicon-oxide surface during the crystallisation process. It is found that a monolayer of molecules forms two-dimensional crystals on the surface.

View Article and Find Full Text PDF

The activity of the potent but highly toxic antifungal drug Amphotericin B (AmB), used intravenously to treat systemic fungal and parasitic infections, is widely accepted to result from its specific interaction with the fungal sterol ergosterol. While the effect of sterols on AmB activity has been intensely investigated, the role of membrane phospholipid composition has largely been ignored, and structural studies of native membranes have been hampered by their complex and disordered nature. We show for the first time that the structure of fungal membranes derived from Pichia pastoris yeast depends on the degree of lipid polyunsaturation, which has an impact on the structural consequences of AmB activity.

View Article and Find Full Text PDF

The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure.

View Article and Find Full Text PDF

Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking.

View Article and Find Full Text PDF

A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction.

View Article and Find Full Text PDF

Probing molecules using perdeuteration (i.e deuteration in which all hydrogen atoms are replaced by deuterium) is extremely useful in a wide range of biophysical techniques. In the case of lipids, the synthesis of the biologically relevant unsaturated perdeuterated lipids is challenging and not usually pursued.

View Article and Find Full Text PDF

The concentration profile of deuterated myoglobin (Mb) adsorbed onto polystyrene substrates displaying poly(ethylene glycol) (PEG) brushes is characterized by neutron reflectometry (NR). The method allows to directly distinguish among primary adsorption at the grafting surface, ternary adsorption within the brush, and secondary adsorption at the brush outer edge. It complements depth-insensitive standard techniques, such as ellipsometry, radioactive labeling, and quartz crystal microbalance.

View Article and Find Full Text PDF

The order in molecular monolayers is a crucial aspect for their technological application. However, the preparation of defined monolayers by spin-coating is a challenge, since the involved processes are far from thermodynamic equilibrium. In the work reported herein, the dynamic formation of dioctyl-benzothienobenzothiophene monolayers is explored as a function of temperature by using X-ray scattering techniques and atomic force microscopy.

View Article and Find Full Text PDF

The Langmuir-Schaefer technique allows horizontal transfer of monolayer films of amphiphilic molecules from an air-water interface to a hydrophobic solid substrate. Spectroscopic ellipsometry has been used to estimate the transfer ratio of Polyethylene Glycol (PEG) polymer brushes prepared by this Langmuir-Schaefer method. We measured the transfer ratio for various degrees of polymerization and surface densities at the air-water interface.

View Article and Find Full Text PDF

The structure of adsorbed globular protein layers on hydrophobic surfaces is elucidated in detail by combining the use of a fully deuterated protein, myoglobin, and the neutron reflectivity technique. The hydrophobic surfaces consist of grafted self-assembled monolayer of octadecyltrichlorosilane (OTS) and polystyrene (PS) layer on silicon substrates. Different protein concentrations ranging from 1mg/ml to 0.

View Article and Find Full Text PDF

Temperature dependent structural and morphological investigations on semiconducting dioctyl-terthiophene (DOTT) thin films prepared on silica surfaces reveals the coexistence of surface induce order and distinct crystalline/liquid crystalline bulk polymorphs. X-ray diffraction and scanning force microscopy measurements indicate that at room temperature two polymorphs are present: the surface induced phase grows directly on the silica interface and the bulk phase on top. At elevated temperatures the long-range order gradually decreases, and the crystal G (340 K), smectic F (348 K), and smectic C (360 K) phases are observed.

View Article and Find Full Text PDF

At the early stages of the division process in Escherichia coli, the protein FtsZ forms a septal ring at the midcell. This Z-ring causes membrane constriction during bacterial division. The Z-ring associates to the lipid membrane through several membrane proteins, ZipA among them.

View Article and Find Full Text PDF

The protein resistance of poly(N-isopropylacrylamide) brushes grafted from silicon wafers was investigated as a function of the chain molecular weight, grafting density, and temperature. Above the lower critical solution temperature (LCST) of 32 °C, the collapse of the water-swollen chains, determined by ellipsometry, depends on the grafting density and molecular weight. Ellipsometry, radio assay, and fluorescence imaging demonstrated that, below the lower critical solution temperature, the brushes repel protein as effectively as oligoethylene oxide-terminated monolayers.

View Article and Find Full Text PDF

We have studied monolayers of poly(n-tetradecyl 4-vinylpyridinium-co-4-vinylpyridine) bromide with different degrees of quaternization at the air-water interface. The isotherms (surface pressure vs area) present several phase transitions: at low monolayer coverage, there is a phase transition over a characteristic area that increases on increasing the quaternization degree. This behavior can be rationalized in terms of a mean-field theory of 2D semiflexible polymeric chains and could be an indication of a disorder-order transition from a 2D isotropic liquid (IL) at low surface concentration to a 2D nematic phase (N) at higher concentrations.

View Article and Find Full Text PDF