Publications by authors named "Michele Sebben"

The 5-hydroxytryptamine type 4 receptor (5-HT4R) is involved in learning, feeding, respiratory control and gastrointestinal transit. This receptor is one of the G-protein-coupled receptors for which alternative mRNA splicing generates the most variants that differ in their C-terminal extremities. Some 5-HT4R variants (a, e and f) express canonical PDZ ligands at their C-termini.

View Article and Find Full Text PDF

In the present study, we verified that the mouse 5-hydroxytryptamine(1A) (5-HT(1A)) receptor is modified by palmitic acid, which is covalently attached to the protein through a thioester-type bond. Palmitoylation efficiency was not modulated by receptor stimulation with agonists. Block of protein synthesis by cycloheximide resulted in a significant reduction of receptor acylation, suggesting that palmitoylation occurs early after synthesis of the 5-HT(1A) receptor.

View Article and Find Full Text PDF

To better understand G-protein-coupled receptor (GPCRs) signaling, cellular and animal physiology, as well as gene therapy, a new tool has recently been proposed. It consists of GPCR mutants that are insensitive to endogenous ligands but sensitive to synthetic ligands. These GPCRs are called receptor activated solely by synthetic ligands (RASSL).

View Article and Find Full Text PDF

Activation of G protein-coupled receptors is thought to involve disruption of intramolecular interactions that stabilize their inactive conformation. Such disruptions are induced by agonists or by constitutively active mutations. In the present study, novel potent inverse agonists are described to inhibit the constitutive activity of 5-HT(4) receptors.

View Article and Find Full Text PDF

We have reported recently that the mouse 5-hydroxytryptamine(4a) (5-HT(4(a))) receptor undergoes dynamic palmitoylation (Ponimaskin, E. G., Schmidt, M.

View Article and Find Full Text PDF