More than six million people worldwide are affected by Parkinson's disease (PD), a multifactorial disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Several immunohistochemical studies suggest that neuromelanin (NM), found in these neurons, plays a key role in their degeneration. In this study, twelve formalin-fixed, paraffin-embedded (FFPE) brain sections were analyzed, comprising six samples from PD patients and six from healthy controls.
View Article and Find Full Text PDFWe recently demonstrated the effectiveness of long-term treatment with rifaximin and the probiotic DSF (De Simone formulation) in improving urogenital and gastrointestinal symptoms in patients with both chronic inflammatory prostatitis (IIIa prostatitis) and diarrhea-predominant irritable bowel syndrome (IBS-D), relative to patients with IBS-D alone. Because the low-grade inflammation of the intestine and prostate may be one of the reasons for co-developing both IIIa prostatitis and IBS-D, we designed the present study to once again evaluate the efficacy of combined rifaximin and DSF treatment in patients affected by IIIa prostatitis plus IBS-D, but we also measured seminal plasma pro-inflammatory (IL-6) and anti-inflammatory (IL-10) cytokines before and after treatment. Methods: We consecutively enrolled 124 patients with IIIa prostatitis and IBS-D (diagnosed using the Rome III criteria).
View Article and Find Full Text PDFThe triadic interplay between sleep, immunity, and cancer represents a growing area of biomedical research with significant clinical implications. This review synthesizes the current knowledge on how sleep influences immune function, the immune system's role in cancer dynamics, and the direct connections between sleep patterns and cancer risk. After a comprehensive overview of the interrelationships among these three domains, the mechanisms of sleep in immune function are described, detailing how sleep regulates the immune system, the effects of sleep duration and quality on immune responses, and the underlying molecular and cellular mechanisms.
View Article and Find Full Text PDFASD is a complex condition primarily rooted in genetics, although influenced by environmental, prenatal, and perinatal risk factors, ultimately leading to genetic and epigenetic alterations. These mechanisms may manifest as inflammatory, oxidative stress, hypoxic, or ischemic damage. To elucidate potential variances in gene expression in ASD, a transcriptome analysis of peripheral blood mononuclear cells was conducted via RNA-seq on 12 ASD patients and 13 healthy controls, all of Sicilian ancestry to minimize environmental confounds.
View Article and Find Full Text PDFBackground/aim: Bladder cancer (BC) is the most prevalent malignant tumor in the urinary tract, classified mainly into muscle-invasive BC (MIBC) and non-MIBC (NMIBC). Recent studies highlight the important role of changes in transcriptome activity in carcinogenesis, aiding in the identification of additional differentially regulated candidate genes, improving our understanding of the molecular basis of gene regulation in BC. This study aimed to evaluate the transcriptome of MIBC patients compared with normal subjects.
View Article and Find Full Text PDFRestless Legs Syndrome (RLS) is a common sleep disorder characterized by an urge to move the legs that is responsive to movement (particularly during rest), periodic leg movements during sleep, and hyperarousal. Recent evidence suggests that the involvement of the adenosine system may establish a connection between dopamine and glutamate dysfunction in RLS. Transcranial magnetic stimulation (TMS) is a non-invasive electrophysiological technique widely applied to explore brain electrophysiology and neurochemistry under different experimental conditions.
View Article and Find Full Text PDFThe aim of this study was to analyze signaling pathways associated with differentially expressed messenger RNAs in people with restless legs syndrome (RLS). Seventeen RLS patients and 18 controls were enrolled. Coding RNA expression profiling of 12,857 gene transcripts by next-generation sequencing was performed.
View Article and Find Full Text PDFParkinson's disease (PD) stands as the most prevalent degenerative movement disorder, marked by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. In this study, we conducted a transcriptome analysis utilizing post mortem mRNA extracted from the substantia nigra of both PD patients and healthy control (CTRL) individuals. Specifically, we acquired eight samples from individuals with PD and six samples from CTRL individuals, with no discernible pathology detected in the latter group.
View Article and Find Full Text PDFAnalytical methods for the early detection of the neurodegenerative biomarker for Parkinson's disease (PD), α-synuclein, are time-consuming and invasive, and require skilled personnel and sophisticated and expensive equipment. Thus, a pain-free, prompt and simple α-synuclein biosensor for detection in plasma is highly demanded. In this paper, an α-synuclein electrochemical biosensor based on hierarchical polyglutamic acid/ZnO nanowires decorated by gold nanoparticles, assembled as nanostars (NSs), for the determination of α-synuclein in human plasma is proposed.
View Article and Find Full Text PDFParkinson's disease (PD) is a multisystem and multifactorial disorder and, therefore, the application of modern genetic techniques may assist in unraveling its complex pathophysiology. We conducted a clinical-demographic evaluation of 126 patients with PD, all of whom were Caucasian and of Sicilian ancestry. DNA was extracted from the peripheral blood for each patient, followed by sequencing using a Next-Generation Sequencing system.
View Article and Find Full Text PDFBackground: Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.
View Article and Find Full Text PDFHerein we focus on connections between genetics and some central disorders of hypersomnolence - narcolepsy types 1 and 2 (NT1, NT2), idiopathic hypersomnia (IH), and Kleine-Levin syndrome (KLS) - for a better understanding of their etiopathogenetic mechanisms and a better diagnostic and therapeutic definition. Gene pleiotropism influences neurological and sleep disorders such as hypersomnia; therefore, genetics allows us to uncover common pathways to different pathologies, with potential new therapeutic perspectives. An important body of evidence has accumulated on NT1 and IH, allowing a better understanding of etiopathogenesis, disease biomarkers, and possible new therapeutic approaches.
View Article and Find Full Text PDFBackground: Bradykinesia, tremor, rigidity and postural instability are the hallmark of Parkinson's disease (PD). Non-motor symptoms including cognitive, behavioral, and neuropsychiatric changes, sensory and sleep disturbances that may precede the motor symptoms by years. The peculiar pathological features of PD are decreased dopaminergic neurons and dopamine levels in the substantia nigra pars compacta and pontine locus coeruleus.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative synucleinopathy that has a not yet fully understood molecular pathomechanism behind it. The role of risk genes regulated by small non-coding RNAs, or microRNAs (miRNAs), has also been highlighted in PD, where they may influence disease progression and comorbidities. In this case-control study, we analyzed miRNAs on peripheral blood mononuclear cells by means of RNA-seq in 30 participants, with the aim of identifying miRNAs differentially expressed in PD compared to age-matched healthy controls.
View Article and Find Full Text PDFCancer is one of the most common causes of death; in parallel, the incidence and prevalence of central nervous system diseases are equally high. Among neurodegenerative diseases, Alzheimer's dementia is the most common, while Parkinson's disease (PD) is the second most frequent neurodegenerative disease. There is a significant amount of evidence on the complex biological connection between cancer and neurodegeneration.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction.
View Article and Find Full Text PDFBackground: Prostate cancer (PCa) is one of the leading causes of death in Western countries. Environmental and genetic factors play a pivotal role in PCa etiology. Timely identification of the genetic causes is useful for an early diagnosis.
View Article and Find Full Text PDFDown syndrome (DS) is defined by the presence of a third copy of chromosome 21. Several comorbidities can be found in these patients, such as intellectual disability (ID), muscle weakness, hypotonia, congenital heart disease, and autoimmune diseases. The molecular mechanisms playing a role in the development of such comorbidities are still unclear.
View Article and Find Full Text PDFChromosome 21 trisomy or Down syndrome (DS) is the most common genetic cause of intellectual disability (ID). DS is also associated with hypotonia, muscle weakness, autoimmune diseases, and congenital heart disease. C-C chemokine receptor type 3 (CCR3) plays a role in inflammatory, autoimmune, and neuronal migration mechanisms.
View Article and Find Full Text PDFConditions such as Alzheimer's (AD) and Parkinson's diseases (PD) are less prevalent in cancer survivors and, overall, cancer is less prevalent in subjects with these neurodegenerative disorders. This seems to suggest that a propensity towards one type of disease may decrease the risk of the other. In addition to epidemiologic data, there is also evidence of a complex biological interconnection, with genes, proteins, and pathways often showing opposite dysregulation in cancer and neurodegenerative diseases.
View Article and Find Full Text PDFIntroduction: Parkinson's disease (PD) is a common adult-onset neurodegenerative disorder caused by a progressive loss of dopaminergic neurons due to the accumulation of α-synuclein in the substantia nigra. Mitochondria are known to play a key role in cell respiratory function and bioenergetics. Indeed, mitochondrial dysfunction causes insufficient energy production required to satisfy the needs of several organs, especially the nervous system.
View Article and Find Full Text PDFPoly (ADP-ribose) polymerase 1 (PARP1) is crucial in both maintenance of genome integrity and cell death. PARP1 activation has been very recently linked to Parkinson's disease (PD) and its role in inducing the pathologic accumulation of α-Synuclein demonstrated in a PD mouse model. The objective of this study was to investigate the presence and localization of PARP1 in PD brain.
View Article and Find Full Text PDFMinerva Endocrinol (Torino)
December 2021
Background: The etiology of azoospermia in patients with Klinefelter Syndrome (KS) is still unknown. The protein codified by the G protein-couple receptor 56 (GPR56) belongs to the adhesion family of G protein-coupled receptors (GPRs). Its mutations are involved in the pathogenesis of intellectual disability and, according to animal studies, infertility.
View Article and Find Full Text PDFKlinefelter syndrome (KS) is the most common sex chromosome disorder in men. It is characterized by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of Y (SRY)-box 13 (Sox13) gene is expressed in mouse spermatogonia.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of small, non-coding RNAs that act as key regulators in various physiological and pathological processes as prostate cancer (PCa). In this study we describe molecular evaluation of 132 and 212 miRNAs expression, by Real-time reverse-transcription PCR (qRT-PCR), in a Caucasian man 64-year-old with locally advanced PCa (PSA 160 ng/ml, Gleason score 4+3/ISUP Grade Group 3, clinical stage T3NXM0) who underwent radical retropubic prostatectomy plus extended pelvic lymphadenectomy (LAD) as first step of a multimodal therapeutic treatment. A normal prostate of a 67-year-old man removed by post mortem autopsy was used as a control in the study.
View Article and Find Full Text PDF