The major errors in HDR procedures were failures to enter the correct treatment distance, which could be caused by either entering wrong transmission lengths or imprecisely digitizing the dwelling positions. Most of those errors were not easily avoidable by enhancing the HDR management level because they were caused by implementations of nonstandardized applicators utilizing transmission tubes of different lengths in standard HDR procedures. We performed this comprehensive study to include all possible situations with different nonstandardized applicators that frequently occurred in HDR procedures, provide corresponding situations with standard applicator as comparisons, list all possible errors and in planning, clarify the confusions in offsets setting, and provide mathematical and quantitative solutions for each given scenarios.
View Article and Find Full Text PDFSecondary neutron dose-equivalents were determined for conventional and intensity modulated radiation therapy (IMRT) prostate treatments for 15 and 18 MV X-ray beams. Conventional and IMRT treatment plans were generated to deliver 45 Gy to the prostate, seminal vessicles and external and internal iliac lymph nodes. Neutron spectra were determined by unfolding measurements from a TLD-based Bonner sphere system.
View Article and Find Full Text PDFObjective: To compare three different techniques of irradiating abdominal neuroblastoma.
Patients And Methods: Six children with a median age of 4.1 years underwent radiotherapy (RT) to the primary site as part of treatment for high-risk neuroblastoma.
Secondary neutron doses from the delivery of 18 MV conventional and intensity modulated radiation therapy (IMRT) treatment plans were compared. IMRT was delivered using dynamic multileaf collimation (MLC). Additional measurements were made with static MLC using a primary collimated field size of 10 x 10 cm2 and MLC field sizes of 0 x 0, 5 x 5, and 10 x 10 cm2.
View Article and Find Full Text PDF