Publications by authors named "Michele Richards"

Campylobacter jejuni is a prevalent gastrointestinal pathogen associated with increasing rates of antimicrobial resistance development. It was also the first bacterium demonstrated to possess a general N-linked protein glycosylation pathway capable of modifying > 80 different proteins, including the primary Campylobacter multidrug efflux pump, CmeABC. Here we demonstrate that N-glycosylation is necessary for the function of the efflux pump and may, in part, explain the evolutionary pressure to maintain this protein modification system.

View Article and Find Full Text PDF

The plasma membrane of cells contains a diverse array of lipids that provide important structural and biological features. Glycolipids are typically a minor component of the cell membrane and consist primarily of glycosphingolipids (GSLs). GSLs in vertebrates contain a multifarious assortment of glycan headgroups, which can be important to biological functions based on lipid-lipid and lipid-protein interactions.

View Article and Find Full Text PDF

Inhibitors of viral neuraminidase enzymes have been previously developed as therapeutics. Humans can express multiple forms of neuraminidase enzymes (NEU1, NEU2, NEU3, NEU4) that share a similar active site and enzymatic mechanism with their viral counterparts. Using a panel of purified human neuraminidase enzymes, we tested the inhibitory activity of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir, oseltamivir, and peramivir against each of the human isoenzymes.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are a major cause of acute gastroenteritis. Many HuNoVs recognize histo-blood group antigens (HBGAs) as cellular receptors or attachment factors for infection. It was recently proposed that HuNoV recognition of HBGAs involves a cooperative, multistep binding mechanism that exploits both known and previously unknown glycan binding sites.

View Article and Find Full Text PDF

Human neuraminidases (NEU) are associated with human diseases including cancer, atherosclerosis, and diabetes. To obtain small molecule inhibitors as research tools for the study of their biological functions, we designed a library of 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues with modifications at C4 and C9 positions. This library allowed us to discover selective inhibitors targeting the human NEU3 isoenzyme.

View Article and Find Full Text PDF

Recognition of terminal sialic acids is central to many cellular processes, and structural modification of sialic acid can disrupt these interactions. A prominent, naturally occurring, modification of sialic acid is 9- O-acetylation (9- O-Ac). Study of this modification through generation and analysis of 9- O-Ac sialosides is challenging because of the lability of the acetate group.

View Article and Find Full Text PDF

This work describes a versatile analytical approach, which combines the proxy ligand electrospray ionization mass spectrometry (ESI-MS) assay and model membranes of defined composition, to quantify the influence of lipid bilayer composition on protein-glycolipid binding in vitro. To illustrate the implementation of the assay (experimental design and data analysis), affinities of the monosialoganglioside ligand GM1, incorporated into nanodiscs (NDs), for cholera toxin B subunit homopentamer (CTB) were measured. A series of NDs containing GM1 and cholesterol were prepared using three different phospholipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)), and the average GM1 and cholesterol content of each ND were determined.

View Article and Find Full Text PDF

The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na) ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å (conformation 1, C1), 708 Å (C2), and 737 Å (C3). The addition of NHCHCO produced (2GA + 2Na) and (2GA + H + Na) ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H), (2GA + 2NH), and (2GA + H + NH) ions, which adopt a single conformation with a Ω similar to that of C2.

View Article and Find Full Text PDF

Saposin A (SapA) lipoprotein discs, also known as picodiscs (PDs), represent an attractive method to solubilize glycolipids for protein interaction studies in aqueous solution. Recent electrospray ionization mass spectrometry (ESI-MS) data suggest that the size and composition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-containing PDs at neutral pH differs from those of N,N-dimethyldodecylamine N-oxide determined by X-ray crystallography. Using high-resolution ESI-MS, multiangle laser light scattering (MALLS), and molecular dynamics (MD) simulations, the composition, heterogeneity, and structure of POPC-PDs in aqueous ammonium acetate solutions at pH 4.

View Article and Find Full Text PDF

We report a detailed study of the structure and stability of carbohydrate-lipid interactions. Complexes of a methylmannose polysaccharide (MMP) derivative and fatty acids (FAs) served as model systems. The dependence of solution affinities and gas-phase dissociation activation energies (Ea ) on FA length indicates a dominant role of carbohydrate-lipid interactions in stabilizing (MMP+FA) complexes.

View Article and Find Full Text PDF

The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-D-GlcNAc, a single chain variable fragment and α-D-Gal-(1→2)-[α-D-Abe-(1→3)]-α-D-Man-OCH3, cholera toxin B subunit homopentamer with β-D-Gal-(1→3)-β-D-GalNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal-(1→4)-β-D-Glc, and a fragment of galectin 3 and α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system.

View Article and Find Full Text PDF

A variety of applications in glycobiology exploit affinity chromatography through the immobilization of glycans to a solid support. Although several strategies are known, they may provide certain advantages or disadvantages in how the sugar is attached to the affinity matrix. Additionally, the products of some methods may be hard to characterize chemically due to non-specific reactions.

View Article and Find Full Text PDF

The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase.

View Article and Find Full Text PDF

Saturation transfer difference (STD) nuclear magnetic resonance (NMR) is a powerful technique which can be used to investigate interactions between proteins and their substrates. The method identifies specific sites of interaction found on a small molecule ligand when in complex with a protein. The ability of STD NMR to provide specific insight into binding interactions in the absence of other structural data is an attractive feature for its use with membrane proteins.

View Article and Find Full Text PDF

Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C.

View Article and Find Full Text PDF

Galactofuranose (Galf) residues are found in a number of microbial polysaccharides, and knowledge of their conformation is key for developing a molecular-level understanding of their biological roles. To this end, we studied 180 conformations of methyl α- and β-Galf in aqueous solution (COSMO solvation model) using density functional theory (DFT). We compare the calculated low energy conformations to those determined from the program PSEUROT using (1)H NMR data.

View Article and Find Full Text PDF

Bacterial capsules are surface layers made of long-chain polysaccharides. They are anchored to the outer membrane of many Gram-negative bacteria, including pathogens such as Escherichia coli, Neisseria meningitidis, Haemophilus influenzae, and Pasteurella multocida. Capsules protect pathogens from host defenses including complement-mediated killing and phagocytosis and therefore represent a major virulence factor.

View Article and Find Full Text PDF

The Escherichia coli O9a and O8 polymannose O-polysaccharides (O-PSs) serve as model systems for the biosynthesis of bacterial polysaccharides by ATP-binding cassette transporter-dependent pathways. Both O-PSs contain a conserved primer-adaptor domain at the reducing terminus and a serotype-specific repeat unit domain. The repeat unit domain is polymerized by the serotype-specific WbdA mannosyltransferase.

View Article and Find Full Text PDF

Results of the first detailed study of the structure and kinetic stability of the model high-affinity protein-ligand interaction between biotin (B) and the homotetrameric protein complex streptavidin (S(4)) in the gas phase are described. Collision cross sections (Ω) measured for protonated gaseous ions of free and ligand-bound truncated (residues 13-139) wild-type (WT) streptavidin, i.e.

View Article and Find Full Text PDF

The Escherichia coli O9a and O8 O-antigen serotypes represent model systems for the ABC transporter-dependent synthesis of bacterial polysaccharides. The O9a and O8 antigens are linear mannose homopolymers containing conserved reducing termini (the primer-adaptor), a serotype-specific repeat unit domain, and a terminator. Synthesis of these glycans occurs on the polyisoprenoid lipid-linked primer, undecaprenol pyrophosphoryl-GlcpNAc, by two conserved mannosyltransferases, WbdC and WbdB, and a serotype-specific mannosyltransferase, WbdA.

View Article and Find Full Text PDF

Biosynthesis of the mycobacterial cell wall relies on the activities of many enzymes, including several glycosyltransferases (GTs). The polymerizing galactofuranosyltransferase GlfT2 (Rv3808c) synthesizes the bulk of the galactan portion of the mycolyl-arabinogalactan complex, which is the largest component of the mycobacterial cell wall. We used x-ray crystallography to determine the 2.

View Article and Find Full Text PDF

The Escherichia coli O9a O-polysaccharide (O-PS) represents a model system for glycan biosynthesis and export by the ATP-binding cassette (ABC) transporter-dependent pathway. The polymannose O9a O-PS is synthesized using an undecaprenol-diphosphate-linked acceptor by mannosyltransferases located at the cytoplasmic membrane. An ABC-transporter subsequently exports the polymer to the periplasm where it is assembled onto lipopolysaccharide prior to translocation to the cell surface.

View Article and Find Full Text PDF

In this report, the conformations of a series of mono- and oligoarabinofuranosides were probed through the use of umbrella sampling simulations with the AMBER force field and the GLYCAM carbohydrate parameter set. The rotamer population distribution about the exocyclic C4-C5 bonds and the puckering distributions of the rings obtained from these umbrella sampling simulations were found to be in excellent agreement with those obtained from conventional long MD simulations for small monosaccharide fragments. For larger systems, the conventional MD approach becomes impractical, and we propose the use of umbrella sampling to circumvent poor sampling of certain conformations.

View Article and Find Full Text PDF

The mycolyl-arabinogalactan (mAG) complex, a large glycolipid composed of arabinofuranose and galactofuranose monosaccharides and mycolic acid lipids, provides mycobacteria with substantial protection from their environment. It has been proposed that the presence of flexible furanose rings in the mAG facilitates the packing of the hydrophobic mycolic acids, forming a dense protective barrier of low permeability. In a previous article, we probed this "flexible scaffold hypothesis" through the synthesis and NMR analysis of di- and trisaccharide fragments of the mAG acylated with linear fatty acids.

View Article and Find Full Text PDF