The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital picture and the formal oxidation state (FOS) formalism.
View Article and Find Full Text PDFIn this work, we report the development and assessment of the nonadiabatic molecular dynamics approach with the electronic structure calculations based on the linearly scaling subsystem density functional method. The approach is implemented in an open-source embedded Quantum Espresso/Libra software specially designed for nonadiabatic dynamics simulations in extended systems. As proof of the applicability of this method to large condensed-matter systems, we examine the dynamics of nonradiative relaxation of excess excitation energy in pentacene crystals with the simulation supercells containing more than 600 atoms.
View Article and Find Full Text PDFEnhancing the catalytic oxidation activity of traditional transition-metal oxides to rival that of noble metals has been a prominent focus in the field of catalysis. However, existing synthesis strategies that focus on controlling the electronic states of metal centers have not yet fully succeeded in achieving this goal. Our current research reveals that manipulating the electronic states of oxygen centers can yield unexpected results.
View Article and Find Full Text PDFWe present ab initio simulations based on subsystem DFT of group 10 aqua ions accurately compared against experimental data on hydration structure. Our simulations provide insights into the molecular structures and dynamics of hydration shells, offering recalibrated interpretations of experimental results. We observe a soft, but distinct second hydration shell in Palladium (Pd) due to a balance between thermal fluctuations, metal-water interactions, and hydrogen bonding.
View Article and Find Full Text PDFHydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities.
View Article and Find Full Text PDFFor an electronic system, given a mean field method and a distribution of orbital occupation numbers that are close to the natural occupations of the correlated system, we provide formal evidence and computational support to the hypothesis that the entropy (or more precisely -σS, where σ is a parameter and S is the entropy) of such a distribution is a good approximation to the correlation energy. Underpinning the formal evidence are mild assumptions: the correlation energy is strictly a functional of the occupation numbers, and the occupation numbers derive from an invertible distribution. Computational support centers around employing different mean field methods and occupation number distributions (Fermi-Dirac, Gaussian, and linear), for which our claims are verified for a series of pilot calculations involving bond breaking and chemical reactions.
View Article and Find Full Text PDFKohn-Sham Density Functional Theory (KSDFT) is the most widely used electronic structure method in chemistry, physics, and materials science, with thousands of calculations cited annually. This ubiquity is rooted in the favorable accuracy vs cost balance of KSDFT. Nonetheless, the ambitions and expectations of researchers for use of KSDFT in predictive simulations of large, complicated molecular systems are confronted with an intrinsic computational cost-scaling challenge.
View Article and Find Full Text PDFThe theorems of density functional theory (DFT) establish bijective maps between the local external potential of a many-body system and its electron density, wavefunction and, therefore, one-particle reduced density matrix. Building on this foundation, we show that machine learning models based on the one-electron reduced density matrix can be used to generate surrogate electronic structure methods. We generate surrogates of local and hybrid DFT, Hartree-Fock and full configuration interaction theories for systems ranging from small molecules such as water to more complex compounds like benzene and propanol.
View Article and Find Full Text PDFUnderstanding and predicting the properties of molecular liquids from the corresponding properties of the individual molecules is notoriously difficult because there is cooperative behavior among the molecules in the liquid. This is particularly relevant for water, where even the most fundamental molecular properties, such as the dipole moment, are radically different in the liquid compared to the gas phase. In this work, we focus on the ionization potential (IP) of liquid water by dissecting its individual contributions from the individual molecules making up the liquid.
View Article and Find Full Text PDFSubsystem density functional theory (DFT) is emerging as a powerful electronic structure method for large-scale simulations of molecular condensed phases and interfaces. Key to its computational efficiency is the use of approximate nonadditive noninteracting kinetic energy functionals. Unfortunately, currently available nonadditive functionals lead to inaccurate results when the subsystems interact strongly such as when they engage in chemical reactions.
View Article and Find Full Text PDFIn this work, we extend the applicability of standard Kohn-Sham DFT (KS-DFT) to model realistically sized molecule-metal interfaces where the metal slabs venture into the tens of nanometers in size. Employing state-of-the-art noninteracting kinetic energy functionals, we describe metallic subsystems with orbital-free DFT and combine their electronic structure with molecular subsystems computed at the KS-DFT level resulting in a multiscale subsystem DFT method. The method reproduces within a few millielectronvolts the binding energy difference of water and carbon dioxide molecules adsorbed on the top and hollow sites of an Al(111) surface compared to KS-DFT of the combined supersystem.
View Article and Find Full Text PDFThe low energy excited states of the conformational isomers of solvated azobenzene are calculated with several DFT methods accounting for the solute-solvent interaction implicitly with the polarizable continuum model or explicitly with subsystem DFT. For the latter, embedding potentials are calculated for 21 sampled snapshots of the solvent molecules. First, we find that accounting for the solvent implicitly or explicitly has little effect on the predicted cis-trans S excitation energy gap.
View Article and Find Full Text PDFThe key feature of nonlocal kinetic energy functionals is their ability to reduce to the Thomas-Fermi functional in the regions of high density and to the von Weizsäcker functional in the region of low-density/high reduced density gradient. This behavior is crucial when these functionals are employed in subsystem DFT simulations to approximate the nonadditive kinetic energy. We propose a GGA nonadditive kinetic energy functional which mimics the good behavior of nonlocal functionals, retaining the computational complexity of typical semilocal functionals.
View Article and Find Full Text PDFWe present the one-orbital ensemble self-consistent field (OE-SCF), an alternative orbital-free DFT solver that extends the applicability of DFT to beyond nanoscale system sizes, retaining the accuracy required to be predictive. OE-SCF treats the Pauli potential as an external potential updating it iteratively, dramatically outperforming current solvers because only few iterations are needed to reach convergence. OE-SCF enabled us to carry out the largest simulations for silicon-based materials to date by employing only 1 CPU.
View Article and Find Full Text PDFExcited Costrained Density Functional Theory (XCDFT) [Ramos and Pavanello, J. Chem. Phys.
View Article and Find Full Text PDFBy invoking a divide-and-conquer strategy, subsystem DFT dramatically reduces the computational cost of large-scale, electronic structure simulations of molecules and materials. The central ingredient setting subsystem DFT apart from Kohn-Sham DFT is the nonadditive kinetic energy functional (NAKE). Currently employed NAKEs are at most semilocal (i.
View Article and Find Full Text PDFGreen technologies rely on green solvents and fluids. Among them, supercritical CO already finds many important applications. The molecular-level understanding of the dynamics and structure of this supercritical fluid is a prerequisite for rational design of future green technologies.
View Article and Find Full Text PDFTuning the electronic properties of oxide surfaces is of pivotal importance, because they find applicability in a variety of industrial processes, including catalysis. Currently, the industrial protocols for synthesizing oxide surfaces are limited to only partial control of the oxide's properties. This is because the ceramic processes result in complex morphologies and a priori unpredictable behavior of the products.
View Article and Find Full Text PDFAlthough the dynamics of charge transfer (CT) processes can be probed with ultimate lifetime resolution, the inability to control CT at the nanoscale is one of the most important roadblocks to revealing some of its deep fundamental aspects. In this work, we present an investigation of CT dynamics in a single iron tetraphenylporphyrin (Fe-TPP) donor/acceptor dyad adsorbed on a CaF2/Si(100) insulating surface. The tip of a scanning tunneling microscope (STM) is used to create local ionic states in one fragment of the dyad.
View Article and Find Full Text PDFSince the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, T[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δT[ρ]δρ(r), yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations.
View Article and Find Full Text PDFExploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, N, in the virtual space of a reference set of occupied orbitals.
View Article and Find Full Text PDFThe optical spectrum of liquid water is analyzed by subsystem time-dependent density functional theory. We provide simple explanations for several important (and so far elusive) features. Due to the disordered environment surrounding each water molecule, the joint density of states of the liquid is much broader than that of the vapor, thus explaining the red-shifted Urbach tail of the liquid compared to the gas phase.
View Article and Find Full Text PDFA surfactant-free sonication-induced route is developed to facilely prepare colloidal nanocrystals of Li-excess layered LiMnNiCoO (marked as LMNCO) material. The sonication process plays a critical role in forming LMNCO nanocrystals in ethanol (ethanol molecules marked as EtOHs) and inducing the interaction between LMNCO and solvent molecules. The formation mechanism of LMNCO-EtOH supramolecules in the colloidal dispersion system is proposed and examined by the theoretical simulation and light scattering technique.
View Article and Find Full Text PDFIn this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical.
View Article and Find Full Text PDF