medRxiv
December 2024
Medication-refractory focal epilepsy poses a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, and to those recorded during low and high kHz frequency (HF) sham stimulation.
View Article and Find Full Text PDFThis work delves into studying the synchronization in two realistic neuron models using Hodgkin-Huxley dynamics. Unlike simplistic pointlike models, excitatory synapses are here randomly distributed along the dendrites, introducing strong stochastic contributions into their signal propagation. To focus on the role of different synaptic locations, we use two copies of the same neuron whose synapses are located at different distances from the soma and activated by identical Poisson distributed pulses.
View Article and Find Full Text PDFThe CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought to play an important role in cognitive functions such as memory and spatial navigation. Despite a wealth of experimental data on its structure and function, it has been challenging to integrate information obtained from diverse experimental approaches. To address this challenge, we present a community-based, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the effects that acetylcholine has on the system.
View Article and Find Full Text PDFUnderstanding the brain requires studying its multiscale interactions from molecules to networks. The increasing availability of large-scale datasets detailing brain circuit composition, connectivity, and activity is transforming neuroscience. However, integrating and interpreting this data remains challenging.
View Article and Find Full Text PDFThe development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for the hippocampal CA1, a region of the brain that plays a key role in functions such as learning, memory consolidation and navigation.
View Article and Find Full Text PDFThe back-propagation of an action potential (AP) from the axon/soma to the dendrites plays a central role in dendritic integration. This process involves an intricate orchestration of various ion channels, but a comprehensive understanding of the contribution of each channel type remains elusive. In this study, we leverage ultrafast membrane potential recordings (V) and Ca imaging techniques to shed light on the involvement of N-type voltage-gated Ca channels (VGCCs) in layer-5 neocortical pyramidal neurons' apical dendrites.
View Article and Find Full Text PDFThe increasing availability of quantitative data on the human brain is opening new avenues to study neural function and dysfunction, thus bringing us closer and closer to the implementation of digital twin applications for personalized medicine. Here we provide a resource to the neuroscience community: a computational method to generate full-scale scaffold model of human brain regions starting from microscopy images. We have benchmarked the method to reconstruct the CA1 region of a right human hippocampus, which accounts for about half of the entire right hippocampal formation.
View Article and Find Full Text PDFThe fundamental role of any neuron within a network is to transform complex spatiotemporal synaptic input patterns into individual output spikes. These spikes, in turn, act as inputs for other neurons in the network. Neurons must execute this function across a diverse range of physiological conditions, often based on species-specific traits.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive memory loss and cognitive dysfunction brain disorder brought on by the dysfunctional amyloid precursor protein (APP) processing and clearance of APP peptides. Increased APP levels lead to the production of AD-related peptides including the amyloid APP intracellular domain (AICD) and amyloid beta (A), and consequently modify the intrinsic excitability of the hippocampal CA1 pyramidal neurons, synaptic protein activity, and impair synaptic plasticity at hippocampal CA1-CA3 synapses. The goal of the present study is to build computational models that incorporate the effect of AD-related peptides on CA1 pyramidal neuron and hippocampal synaptic plasticity under the AD conditions and investigate the potential pharmacological treatments that could normalize hippocampal synaptic plasticity and learning in AD.
View Article and Find Full Text PDFHippocampal Place Cells (PCs) are pyramidal neurons showing spatially localized firing when an animal gets into a specific area within an environment. Because of their obvious and clear relation with specific cognitive functions, Place Cells operations and modulations are intensely studied experimentally. However, although a lot of data have been gathered since their discovery, the cellular processes that interplay to turn a hippocampal pyramidal neuron into a Place Cell are still not completely understood.
View Article and Find Full Text PDFTo build biophysically detailed models of brain cells, circuits, and regions, a data-driven approach is increasingly being adopted. This helps to obtain a simulated activity that reproduces the experimentally recorded neural dynamics as faithfully as possible, and to turn the model into a useful framework for making predictions based on the principles governing the nature of neural cells. In such a context, the access to existing neural models and data outstandingly facilitates the work of computational neuroscientists and fosters its novelty, as the scientific community grows wider and neural models progressively increase in type, size, and number.
View Article and Find Full Text PDFFull-scale morphologically and biophysically realistic model networks, aiming at modeling multiple brain areas, provide an invaluable tool to make significant scientific advances from in-silico experiments on cognitive functions to digital twin implementations. Due to the current technical limitations of supercomputer systems in terms of computational power and memory requirements, these networks must be implemented using (at least) simplified neurons. A class of models which achieve a reasonable compromise between accuracy and computational efficiency is given by generalized leaky integrate-and fire models complemented by suitable initial and update conditions.
View Article and Find Full Text PDFTraining with long inter-session intervals, termed distributed training, has long been known to be superior to training with short intervals, termed massed training. In the present study we compared c-Fos expression after massed and distributed training protocols in the Morris water maze to outline possible differences in the learning-induced pattern of neural activation in the dorsal CA1 in the two training conditions. The results demonstrate that training and time lags between learning opportunities had an impact on the pattern of neuronal activity in the dorsal CA1.
View Article and Find Full Text PDF: Image analysis applications in digital pathology include various methods for segmenting regions of interest. Their identification is one of the most complex steps and therefore of great interest for the study of robust methods that do not necessarily rely on a machine learning (ML) approach. : A fully automatic and optimized segmentation process for different datasets is a prerequisite for classifying and diagnosing indirect immunofluorescence (IIF) raw data.
View Article and Find Full Text PDFDorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons.
View Article and Find Full Text PDFLearning to navigate a complex environment is not a difficult task for a mammal. For example, finding the correct way to exit a maze following a sequence of cues, does not need a long training session. Just a single or a few runs through a new environment is, in most cases, sufficient to learn an exit path starting from anywhere in the maze.
View Article and Find Full Text PDFSynaptic plasticity is believed to be a key mechanism underlying learning and memory. We developed a phenomenological N-methyl-D-aspartate (NMDA) receptor-based voltage-dependent synaptic plasticity model for synaptic modifications at hippocampal CA3-CA1 synapses on a hippocampal CA1 pyramidal neuron. The model incorporates the GluN2A-NMDA and GluN2B-NMDA receptor subunit-based functions and accounts for the synaptic strength dependence on the postsynaptic NMDA receptor composition and functioning without explicitly modeling the NMDA receptor-mediated intracellular calcium, a local trigger of synaptic plasticity.
View Article and Find Full Text PDFPhase amplitude coupling (PAC) between slow and fast oscillations is found throughout the brain and plays important functional roles. Its neural origin remains unclear. Experimental findings are often puzzling and sometimes contradictory.
View Article and Find Full Text PDFIn the last decades, brain modeling has been established as a fundamental tool for understanding neural mechanisms and information processing in individual cells and circuits at different scales of observation. Building data-driven brain models requires the availability of experimental data and analysis tools as well as neural simulation environments and, often, large scale computing facilities. All these components are rarely found in a comprehensive framework and usually require programming.
View Article and Find Full Text PDFWe present here an online platform for sharing resources underlying publications in neuroscience. It enables authors to easily upload and distribute digital resources, such as data, code, and notebooks, in a structured and systematic way. Interactivity is a prominent feature of the Live Papers, with features to download, visualise or simulate data, models and results presented in the corresponding publications.
View Article and Find Full Text PDFThe modeling of extended microcircuits is emerging as an effective tool to simulate the neurophysiological correlates of brain activity and to investigate brain dysfunctions. However, for specific networks, a realistic modeling approach based on the combination of available physiological, morphological and anatomical data is still an open issue. One of the main problems in the generation of realistic networks lies in the strategy adopted to build network connectivity.
View Article and Find Full Text PDFThe hippocampus is a widely studied brain region thought to play an important role in higher cognitive functions such as learning, memory, and navigation. The amount of data on this region increases every day and delineates a complex and fragmented picture, but an integrated understanding of hippocampal function remains elusive. Computational methods can help to move the research forward, and reconstructing a full-scale model of the hippocampus is a challenging yet feasible task that the research community should undertake.
View Article and Find Full Text PDFUnderstanding the human brain is a "Grand Challenge" for 21st century research. Computational approaches enable large and complex datasets to be addressed efficiently, supported by artificial neural networks, modeling and simulation. Dynamic generative multiscale models, which enable the investigation of causation across scales and are guided by principles and theories of brain function, are instrumental for linking brain structure and function.
View Article and Find Full Text PDFIn this work, we highlight an electrophysiological feature often observed in recordings from mouse CA1 pyramidal cells that has so far been ignored by experimentalists and modelers. It consists of a large and dynamic increase in the depolarization baseline (i.e.
View Article and Find Full Text PDF