Cancer cachexia is a highly prevalent condition associated with poor quality of life and reduced survival. Tumor-induced perturbations in the endocrine, immune and nervous systems drive anorexia and catabolic changes in adipose tissue and skeletal muscle, hallmarks of cancer cachexia. However, the molecular mechanisms driving cachexia remain poorly defined, and there are currently no approved drugs for the condition.
View Article and Find Full Text PDFUnder homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand. Recent studies have identified brain areas outside the hypothalamus that are activated under these 'non-homeostatic' conditions, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive.
View Article and Find Full Text PDFUCOE vectors contain non-tissue specific chromatin-opening-elements that permit rapid expression of a protein in anintegration independent manner. Efficient expression can bederived from a single copy of an integrated gene site resulting ina higher percentage of cells expressing the marker gene in theselected pool in comparison to standard non-UCOE containingvectors. This, in combination with the utilization of a serum-free, suspension adapted parent cell line allows for rapidproduction of large quantities of protein in a short period oftime.
View Article and Find Full Text PDFAmyloid beta-derived diffusible ligands (ADDLs) comprise the neurotoxic subset of soluble Abeta(1-42) oligomers, now widely considered to be the molecular cause of memory malfunction and neurodegeneration in Alzheimer's disease (AD). We have developed a screening cascade which identifies small molecule modulators of ADDL-mediated neurotoxicity. The primary screen involves a fluorescence resonance energy transfer (FRET)-based assay which selects inhibitors of Abeta1-42 oligomer assembly.
View Article and Find Full Text PDF