Publications by authors named "Michele M Henry"

Mitochondrial (m) KATP channel opening has been implicated in triggering cardiac preconditioning. Its consequence on mitochondrial respiration, however, remains unclear. We investigated the effects of two different KATP channel openers and antagonists on mitochondrial respiration under two different energetic conditions.

View Article and Find Full Text PDF

Melanin in the long-lived melanosomes of the retinal pigment epithelium (RPE) may undergo photobleaching with aging, which appears to diminish the antioxidant function of melanin and could make photobleached melanosomes less efficient in protecting biomolecules from oxidative modification. Here we analyzed whether photobleaching of melanosomes affects their ability to modify the oxidation state of nearby protein. As conventional methods developed to study soluble antioxidants are not well suited for analysis of granules such as melanosomes, we developed a new analytic method to focus on particle surfaces that involves experimentally coating granules with the cytoskeletal protein beta-actin to serve as a reporter for local protein oxidation.

View Article and Find Full Text PDF

Melanosomes of the retinal pigment epithelium (RPE) are relatively long-lived organelles that are theoretically susceptible to changes induced by exposure to visible light. Here melanosomes were isolated from porcine RPE cells and subjected to high intensity visible light to determine the effects of illumination on melanosome structure and on the content and antioxidant properties of melanin. As compared to untreated melanosomes, illuminated granules showed morphologic changes consistent with photodegradation, which included variable reductions in electron density demonstrated by transmission electron microscopy (TEM), and particle fragmentation and surface disruption revealed by scanning electron microscopy (SEM) and atomic force microscopy.

View Article and Find Full Text PDF

This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as "photobiomodulation," uses light in the far-red to near-infrared region of the spectrum (630-1000 nm) and modulates numerous cellular functions. Positive effects of NIR-light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production.

View Article and Find Full Text PDF

The pigment melanin has antioxidant properties that could theoretically reduce oxidative damage to the retinal pigment epithelium (RPE), perhaps protecting against retinal diseases with an oxidative stress component like age-related macular degeneration. To determine whether melanin confers cytoprotection on RPE cells, melanosomes or control particles were introduced by phagocytosis into the human cell line ARPE-19 and oxidative stress was induced chemically (H2O2 or tert-butyl hydroperoxide) or with visible light. Since the iron-binding capacity of melanin is important for its antioxidant function, experiments were performed to confirm that the melanosomes were not iron saturated.

View Article and Find Full Text PDF

Far red and near infrared (NIR) light promotes wound healing, but the mechanism is poorly understood. Our previous studies using 670 nm light-emitting diode (LED) arrays suggest that cytochrome c oxidase, a photoacceptor in the NIR range, plays an important role in therapeutic photobiomodulation. If this is true, then an irreversible inhibitor of cytochrome c oxidase, potassium cyanide (KCN), should compete with LED and reduce its beneficial effects.

View Article and Find Full Text PDF

Retinal photoreceptors and retinal pigment epithelial (RPE) cells are among the cell types that are sensitive to poisoning with methanol and its toxic metabolite formic acid. When exposed to formic acid in vitro, cultured cell lines from photoreceptors (661W) and the RPE (ARPE-19) were previously shown to accumulate similar levels of formate, but cytotoxic effects are greater in 661W cells. Here catalase and glutathione were analyzed in the two retinal cell lines to determine whether differences in these antioxidant systems contributed to cell-type-specific differences in cytotoxicity.

View Article and Find Full Text PDF

Background: Anesthetic preconditioning protects against cardiac ischemia/reperfusion injury. Increases in reduced nicotinamide adenine dinucleotide and reactive oxygen species during sevoflurane exposure suggest attenuated mitochondrial electron transport as a trigger of anesthetic preconditioning. The authors investigated the effects of sevoflurane on respiration in isolated cardiac mitochondria.

View Article and Find Full Text PDF

Methanol has neurotoxic actions on the human retina due to its metabolite, formic acid, which is a mitochondrial toxin. In methanol poisoned animals, morphologic changes were seen both in retinal photoreceptors and in cells of the underlying retinal pigment epithelium (RPE). Here the effects of formate exposure on the two retinal cell types were analyzed in more detail in vitro using photoreceptor (661W) and RPE (ARPE-19) cell lines.

View Article and Find Full Text PDF

Background: Mitochondrial changes that characterize the heart after anesthetic preconditioning (APC) or the mechanisms by which mitochondrial triggering factors lead to protection are unknown. This study hypothesized that generation of reactive oxygen species (ROS) during APC is required to initiate the mitochondrial protective effects, and that APC leads to improved mitochondrial electron transport chain function and cardiac function during reperfusion.

Methods: Isolated guinea pig hearts were subject to 30 min ischemia and 120 min reperfusion.

View Article and Find Full Text PDF