Publications by authors named "Michele Luche"

We previously disclosed the discovery of rationally designed N-((1-(4-(propylsulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide inhibitors of glycine transporter-1 (GlyT-1), represented by analogues 10 and 11. We describe herein further structure-activity relationship exploration of this series via an optimization strategy that primarily focused on the sulfonamide and benzamide appendages of the scaffold. These efforts led to the identification of advanced leads possessing a desirable balance of excellent in vitro GlyT-1 potency and selectivity, favorable ADME and in vitro pharmacological profiles, and suitable pharmacokinetic and safety characteristics.

View Article and Find Full Text PDF

Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype and phenotype, but their ability to accurately simulate gene-gene interactions has not been investigated extensively. Here we assess how accurately a metabolic model for Escherichia coli computes one particular type of gene-gene interaction, synthetic lethality, and find that the accuracy rate is between 25% and 43%.

View Article and Find Full Text PDF

Mathematical models of biochemical networks form a cornerstone of bacterial systems biology. Inconsistencies between simulation output and experimental data point to gaps in knowledge about the fundamental biology of the organism. One such inconsistency centers on the gene aldA in Escherichia coli: it is essential in a computational model of E.

View Article and Find Full Text PDF

Through medicinal chemistry lead optimization studies focused on calculated properties and guided by X-ray crystallography and computational modeling, potent pan-JNK inhibitors were identified that showed submicromolar activity in a cellular assay. Using in vitro ADME profiling data, 9t was identified as possessing favorable permeability and a low potential for efflux, but it was rapidly cleared in liver microsomal incubations. In a mouse pharmacokinetics study, compound 9t was brain-penetrant after oral dosing, but exposure was limited by high plasma clearance.

View Article and Find Full Text PDF

The sodium glucose co-transporter 2 (SGLT2) has received considerable attention in recent years as a target for the treatment of type 2 diabetes mellitus. This report describes the design, synthesis and structure-activity relationship (SAR) of C-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties as novel SGLT2 inhibitors. Compounds 5p and 33b demonstrated high potency in inhibiting SGLT2 and high selectivity against SGLT1.

View Article and Find Full Text PDF

Three new compounds named leporizines A-C have been isolated from an Aspergillus sp. strain. Their structures were elucidated by analysis of 1D and 2D NMR spectra.

View Article and Find Full Text PDF

The design, synthesis, and structure-activity relationships (SAR) of a series of N-((1-(4-(propylsulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide inhibitors of glycine transporter-1 (GlyT-1) are described. Optimization of the benzamide and central ring components of the core scaffold led to the identification of a GlyT-1 inhibitor that demonstrated in vivo activity in a rodent cerebral spinal fluid (CSF) glycine model.

View Article and Find Full Text PDF

A new series of 5-(pyridinon-1-yl)indazoles with MCH-1 antagonist activity were synthesized. Potential cardiovascular risk for these compounds was assessed based upon their interaction with the hERG potassium channel in a mini-patch clamp assay. Selected compounds were studied in a 5-day diet-induced obese mouse model to evaluate their potential use as weight loss agents.

View Article and Find Full Text PDF

A new series of tetrahydrocarbolines with potent MCH-1 antagonist activity were synthesized, using a conformationally constrained design approach towards optimizing pharmacokinetic properties. Two compounds from this series were progressed to a 5-day diet-induced obesity mouse screening model to evaluate their potential as weight loss agents. Both compounds produced a highly significant reduction in weight, which was attributed to their improved pharmacokinetic profile.

View Article and Find Full Text PDF

A new series of 4-aryl-1-(indazol-5-yl)pyridin-2(1H)ones possessing MCH-1 receptor antagonism is presented. Suzuki coupling of boronic acids with key triflate 6 allowed rapid generation of a range of analogs. The SAR of the MCH-1 receptor was explored with a variety of aryl and heterocyclic moieties.

View Article and Find Full Text PDF

Three new antibiotics, neopyrrolomycins B (1), C (2), and D (3), with potent activity against Gram-positive pathogens were discovered. They exhibited MIC values < 1 microg/mL versus a number of resistant strains. The compounds were obtained from the ethyl acetate extracts of a Streptomyces sp.

View Article and Find Full Text PDF

Resistance to currently available antibiotics has become a widely recognized crisis in the medical community. To address this, many companies and researchers are refocusing their attention towards natural products, which have an excellent track record of producing effective antibacterial drugs. The AMRI natural product library was screened for activity against multi-drug resistant Staphylococcus aureus (MDRSA).

View Article and Find Full Text PDF

Two new xanthone antibiotics, citreamicin delta (1) and epsilon (2), with potent activity against Gram-positive pathogens including multidrug-resistant Staphylococcus aureus (MDRSA) were discovered. Compounds 1 and 2 exhibited MIC values < 1 microg/mL versus a number of resistant strains. The compounds were obtained from EtOAc extracts of Streptomyces vinaceus and were purified by countercurrent chromatography and reversed-phase HPLC.

View Article and Find Full Text PDF