Publications by authors named "Michele Koenigsberger"

In rat mesenteric arteries, smooth muscle cells exhibit intercellular calcium waves in response to local phenylephrine stimulation. These waves have a velocity of approximately 20 cells/s and a range of approximately 80 cells. We analyze these waves in a theoretical model of a population of coupled smooth muscle cells, based on the hypothesis that the wave results from cell membrane depolarization propagation.

View Article and Find Full Text PDF

Vasomotion consists of cyclic arterial diameter variations induced by synchronous contractions and relaxations of smooth muscle cells. However, the arteries do not contract simultaneously on macroscopic distances, and a propagation of the contraction can be observed. In the present study, our aim was to investigate this propagation.

View Article and Find Full Text PDF

In vitro, different techniques are used to study the smooth muscle cells' calcium dynamics and contraction/relaxation mechanisms on arteries. Most experimental studies use either an isometric or an isobaric setup. However, in vivo, a blood vessel is neither isobaric nor isometric nor isotonic, as it is continuously submitted to intraluminal pressure variations arising from heart beat.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the endothelium, a layer of cells lining blood vessels, can influence vasomotion, which is the rhythmic contraction and relaxation of arteries.
  • Experiments on rat mesenteric arteries show that the endothelium is not essential for vasomotion but can either promote or suppress it depending on the circumstances.
  • The findings help clarify previous contradictory research and establish that endothelium-derived factors play a critical role in regulating vasomotion.
View Article and Find Full Text PDF

Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response.

View Article and Find Full Text PDF

Asynchronous and synchronous calcium oscillations occur in a variety of cells. A well-established pathway for intercellular communication is provided by gap junctions which connect adjacent cells and can mediate electrical and chemical coupling. Several experimental studies report that cells presenting only a transient increase when freshly dispersed may oscillate when they are coupled.

View Article and Find Full Text PDF

It is well-known that cyclic variations of the vascular diameter, a phenomenon called vasomotion, are induced by synchronous calcium oscillations of smooth muscle cells (SMCs). However, the role of the endothelium on vasomotion is unclear. Some experimental studies claim that the endothelium is necessary for synchronization and vasomotion, whereas others report rhythmic contractions in the absence of an intact endothelium.

View Article and Find Full Text PDF

We investigated heterocellular communication in rat mesenteric arterial strips at the cellular level using confocal microscopy. To visualize Ca(2+) changes in different cell populations, smooth muscle cells (SMCs) were loaded with Fluo-4 and endothelial cells (ECs) with Fura red. SMC contraction was stimulated using high K(+) solution and Phenylephrine.

View Article and Find Full Text PDF

Many experimental studies have shown that arterial smooth muscle cells respond with cytosolic calcium rises to vasoconstrictor stimulation. A low vasoconstrictor concentration gives rise to asynchronous spikes in the calcium concentration in a few cells (asynchronous flashing). With a greater vasoconstrictor concentration, the number of smooth muscle cells responding in this way increases (recruitment) and calcium oscillations may appear.

View Article and Find Full Text PDF